J. Mater. Sci. Technol. ›› 2022, Vol. 122: 219-230.DOI: 10.1016/j.jmst.2021.04.081
• Research Article • Previous Articles Next Articles
Honglin Yana,b, Jianqiu Wanga,*(), Zhiming Zhanga, Bright O. Okonkwoa,b
Received:
2021-02-04
Revised:
2021-04-06
Accepted:
2021-04-19
Published:
2022-09-20
Online:
2022-03-11
Contact:
Jianqiu Wang
About author:
* E-mail address: wangjianqiu@imr.ac.cn (J. Wang).Honglin Yan, Jianqiu Wang, Zhiming Zhang, Bright O. Okonkwo. Effects of cutting parameter on microstructure and corrosion behavior of 304 stainless steel in simulated primary water[J]. J. Mater. Sci. Technol., 2022, 122: 219-230.
C | Cr | Ni | N | Mn | Si | S | P | Fe |
---|---|---|---|---|---|---|---|---|
0.053 | 18.45 | 8.30 | 0.057 | 1.59 | 0.47 | 0.004 | 0.022 | Bal. |
Table 1. Chemical composition of 304SS (wt.%).
C | Cr | Ni | N | Mn | Si | S | P | Fe |
---|---|---|---|---|---|---|---|---|
0.053 | 18.45 | 8.30 | 0.057 | 1.59 | 0.47 | 0.004 | 0.022 | Bal. |
Num. | Feed rate(mm/r) | Cutting speed(r/min) | Cutting depth(mm) | Ra(μm) |
---|---|---|---|---|
1 | 0.50 | 140 | 1 | 74.7 |
2 | 0.15 | 140 | 1 | 14.1 |
3 | 0.20 | 140 | 1 | 30.2 |
4 | 0.20 | 280 | 1 | 17.4 |
5 | 0.20 | 450 | 1 | 27.1 |
6 | 0.20 | 450 | 0.5 | 16.3 |
7 | 0.20 | 450 | 0.2 | 25.2 |
Table 2. Cutting parameters and the corresponding surface roughness (Ra).
Num. | Feed rate(mm/r) | Cutting speed(r/min) | Cutting depth(mm) | Ra(μm) |
---|---|---|---|---|
1 | 0.50 | 140 | 1 | 74.7 |
2 | 0.15 | 140 | 1 | 14.1 |
3 | 0.20 | 140 | 1 | 30.2 |
4 | 0.20 | 280 | 1 | 17.4 |
5 | 0.20 | 450 | 1 | 27.1 |
6 | 0.20 | 450 | 0.5 | 16.3 |
7 | 0.20 | 450 | 0.2 | 25.2 |
Fig. 1. (a) Machining cutting process of NG 304 SS. Cutting fluid was used to avoid overheat of the sample surface; (b) test samples. All the samples were cut from the same position of the machined plates.
Fig. 2 Three-dimensional morphology of the machined samples. (a)-(g) are the machined samples labeled #1 to #7 respectively. Machining characters like peak, valley and feed direction are denoted by arrows.
Fig. 3. (a)-(g) Cross-sectional metallographs of machined samples, with numbered #1 to #7 respectively. Machining-produced characteristics such as “peak”, “valley”, slip band, deformed GB, broken chip are all identified in the photograph.
Fig. 4. EBSD analysis of cross-sectional deformation of the machined samples, including (a) band contrast (BC) map, (b) inverse pole figure (IPF), and (c) kernel average misorientation (KAM) map. Samples from #1 to #7 are arranged in order from left to right.
Fig. 5. (a) Effect of feed rate on the distribution of the cross-sectional hardness. The cutting speed (Vc) is 140 r/min, the cutting depth (ap) is 1 mm, and the feed rate (f) is 0.50 m m/r, 0.20 mm/r, 0.15 mm/r respectively; (b) Effect of cutting speed on the cross-sectional hardness. The feed rate is 0.20 m m/r, the cutting depth is 1 mm, and the cutting speed is 450 r/min, 300 r/min, 140 r/min respectively; (c) Effect of cutting speed on the cross-sectional hardness. The cutting speed is 450 r/min, the feed rate is 0.20 mm/r, and the cutting depth is 1.0 mm, 0.5 mm, and 0.2 mm respectively.
Fig. 6. (a) Schematic diagram of sampling in different areas of Sample #5. Samples are taken from the surface, the deformation zone about 50 μm from the surface, and the substrate 300 μm from the surface; (b) The sample preparation process using FIB, where b-1, b-2, b-3 is the ion beam cutting process at three sampling positions.
Fig. 7. (a) Bright field (BF) micrograph of the microstructure of the machined surface; (b) Selected electron diffraction of the nanocrystalline region; (c) Dark-field micrograph of the nanocrystalline region; (d) Local BF micrograph of the nanocrystalline region and the corresponding SADP.
Fig. 8. (a) The bright-field micrograph of the FIB sample in the machining-affected zone (MAZ); (b) The corresponding selected area electron diffraction of the deformation bands; (c) Dark field image of the twin.
Fig. 10. (a) FIB sampling of the surface of Sample #5; (b) TEM bright field scanning transmission micrograph of the corrosion sample with big oxide particle on top and SADP of the area below big particle; (c) Selected area electron diffraction of the big oxide particle and the corresponding EDS analysis; (d) TEM dark field scanning transmission micrograph of the corrosion sample; (e) EDS line scan analysis on the cross-section oxide film. In scanning transmission mode, the electron beam spot size is 1.5 nm, and the scanning step size is 2 nm.
Fig. 11. (a) Morphology and FIB sampling at the deformed area of Sample #5 after corrosion; (b) TEM bright-field scanning transmission micrograph; (c) TEM dark-field scanning transmission micrograph.
Fig. 12. (a) BF micrograph shows corrosion morphology of the grain boundary in the deformed area of Sample #5; (b) high magnification of oxides morphology at the tip of grain boundary corrosion front; (c) EDS mapping results of Cr, Fe, Ni, O elements in GB corrosion area.
Fig. 13. (a) TEM bright-field corrosion morphology at the deformed zone of Sample #5, with the inserted selected area electron diffraction pattern; (b) high-angle annular dark field (HAADF) image of the deformation twin corrosion area; (c) EDS mapping analysis of Cr, Fe, Ni, and O elements; (d) EDS line scan analysis across the corroded deformation twin. Under scanning transmission mode, the electron beam spot size is 1.5 nm, and the scanning step size is 2 nm.
Fig. 14. (a) Schematic diagram of FIB sampling of the cross-section of Sample #5; (b) the cross-sectional morphology after the FIB milling; (c)-(e) the high-magnification photo of the I, II, and III regions in (b).
Fig. 15. Comparison of the corrosion behaviors of different microstructure of Sample #5. A, B&E represent the general corrosion rate of the fine-grain region, plastic deformation region and substrate material respectively. C&D represent the localized corrosion rate along grain boundary, deformation bands in the same depth of deformation region.
[1] | J.P. Davim, Surface Integrity in Machining, Springer, London, 2010. |
[2] | W.Q. Zhang, X.L. Wang, Y.J. Hu, S.Y. Wang, Int. J. Mach. Tools Manuf. 130 (2018) 36-48. |
[3] | R.W. Staehle, J.A. Gorman, Corrosion 59 ( 2003) 931-994. |
[4] |
I.S. Jawahir, E. Brinksmeier, R. M’Saoubi, D.K. Aspinwall, J.C. Outeiro, D. Meyer, D. Umbrello, A.D. Jayal, CIRP Ann. 60 (2011) 603-626.
DOI URL |
[5] |
A. Turnbull, K. Mingard, J.D. Lord, B. Roebuck, D.R. Tice, K.J. Mottershead, N. D. Fairweather, A.K. Bradbury, Corros. Sci. 53 (2011) 3398-3415.
DOI URL |
[6] |
P.S. Kumar, S.G. Acharyya, S.V.R. Rao, K. Kapoor, Mater. Sci. Eng. A 687 (2017) 193-199.
DOI URL |
[7] |
W.Q. Zhang, K.W. Fang, Y.J. Hu, S.Y. Wang, X.L. Wang, Corros. Sci. 108 (2016) 173-184.
DOI URL |
[8] |
S. Ghosh, V. Kain, Mater. Sci. Eng. A 527 (2010) 679-683.
DOI URL |
[9] |
F. Meng, J. Wang, E.H. Han, W. Ke, Corros. Sci. 51 (2009) 2761-2769.
DOI URL |
[10] |
S. Rahimi, K. Mehrez, T.J. Marrow, Corros. Eng. Sci. Technol. 51 (2016) 383-391.
DOI URL |
[11] | T.Shoji, in:Proceedings of the 11th International Symposium on Environmen- tal Degradation of Materials in Nuclear Power Systems-Water Reactors, WA, USA, NACE, Stevenson, 2003. |
[12] |
L.T. Chang, M.G. Burke, F. Scenini, Corros. Sci. 138 (2018) 54-65.
DOI URL |
[13] |
W. Karlsen, G. Diego, B. Devrient, J. Nucl. Mater. 406 (2010) 138-151.
DOI URL |
[14] |
S.Y. Wang, Y.J. Hu, K.W. Fang, W.Q. Zhang, X.L. Wang, Corros. Sci. 126 (2017) 104-120.
DOI URL |
[15] |
S. Ghosh, M.K. Kumar, V. Kain, Appl. Surf. Sci. 264 (2013) 312-319.
DOI URL |
[16] |
L.T. Chang, L. Volpe, Y.L. Wang, M.G. Burke, A. Maurotto, D. Tice, S. Lozano-Perez, F. Scenini, Acta Mater. 165 (2019) 203-214.
DOI URL |
[17] |
S.J. Zinkle, G.S. Was, Acta Mater. 61 (2013) 735-758.
DOI URL |
[18] |
J.C. Outeiro, J.C. Pina, R. M’Saoubi, F. Pusavec, I.S. Jawahir, CIRP Ann. Manuf. Technol. 57 (2008) 77-80.
DOI URL |
[19] |
W.C. Oliver, G.M. Pharr, J. Mater. Res. 19 (2011) 3-20.
DOI URL |
[20] | R.R. Shen, P. Efsing, Ultramicroscopy 184 (Pt A) (2018) 156-163. |
[21] |
H.L. Ming, X.C. Liu, H.L. Yan, Z.M. Zhang, J.Q. Wang, L.X. Gao, J. Lai, E.H. Han, Scr. Mater. 170 (2019) 111-115.
DOI URL |
[22] |
L.P.L. Carlsson S, Acta Mater. 49 (2001) 2179-2191.
DOI URL |
[23] |
L.P.L. Carlsson S, Acta Mater. 49 (2001) 2193-2203.
DOI URL |
[24] | C.L. Wu, B.Y. Ye, W.J. Deng, Adv. Mater. Manuf. Sci. Technol. (2009) 387-392 XiiiIi 628-629. |
[25] |
I. Korkut, M. Kasap, I. Ciftci, U. Seker, Mater. Des. 25 (2004) 303-305.
DOI URL |
[26] |
D. Dudzinski, A. Molinari, Int. J. Mech. Sci. 39 (1997) 369-389.
DOI URL |
[27] |
H.T. Ding, Y.C. Shin, J. Mater. Process. Technol. 213 (2013) 877-886.
DOI URL |
[28] |
J. Robertson, Corros. Sci. 32 (1991) 443-465.
DOI URL |
[29] |
B. Stellwag, Corros. Sci. 40 (1998) 337-370.
DOI URL |
[30] |
S.E. Ziemniak, M. Hanson, Corros. Sci. 44 (2002) 2209-2230.
DOI URL |
[31] |
J.Z. Wang, J.Q. Wang, E.H. Han, J. Mater. Sci. Technol. 32 (2016) 333-340.
DOI URL |
[32] |
S.G. Acharyya, A. Khandelwal, V. Kain, A. Kumar, I. Samajdar, Mater. Charact. 72 (2012) 68-76.
DOI URL |
[33] |
A. Atkinson, Solid State Ion. 12 (1984) 309-320.
DOI URL |
[34] |
Z.M. Zhang, J.Q. Wang, E.H. Han, W. Ke, J. Mater. Sci. Technol. 28 (2012) 353-361.
DOI URL |
[35] |
Z.M. Zhang, J.Q. Wang, E.H. Han, W. Ke, Corros. Sci. 94 (2015) 245-254.
DOI URL |
[36] | F.P. Ford,Corrosion 52 (1996) 375-395. |
[37] |
M.M. Hall, Corros. Sci. 51 (2009) 225-233.
DOI URL |
[38] | T. Shoji, Z. Lu, Q. Peng, Factors Affecting Stress Corrosion Cracking (SCC) and Fundamental Mechanistic Understanding of Stainless Steels, Woodhead Pub- lishing, 2011. |
[1] | Wei Wei, Shujiang Geng, Fuhui Wang. Evaluation of Ni-Fe base alloys as inert anode for low-temperature aluminium electrolysis [J]. J. Mater. Sci. Technol., 2022, 107(0): 216-226. |
[2] | R. Silva, S. Vacchi G., L. Kugelmeier C., G.R. Santos I., A. Mendes Filho A., C.C. Magalhães D., R.M. Afonso C., L. Sordi V., A.D. Rovere C.. New insights into the hardening and pitting corrosion mechanisms of thermally aged duplex stainless steel at 475 °C: A comparative study between 2205 and 2101 steels [J]. J. Mater. Sci. Technol., 2022, 98(0): 123-135. |
[3] | Xiaodong Lin, Qunjia Peng, Yaolei Han, En-Hou Han, Wei Ke. Effect of thermal ageing and dissolved gas on corrosion of 308L stainless steel weld metal in simulated PWR primary water [J]. J. Mater. Sci. Technol., 2022, 96(0): 308-324. |
[4] | Zhiquan Wang, Chun Li, Ragnar Kiebach, Ilaria Ritucci, Ming Chen, Jian Cao. Joining of Co coated ferritic stainless steel to ceramic solid oxide cells by a novel Ag-SiO2 braze [J]. J. Mater. Sci. Technol., 2022, 121(0): 174-180. |
[5] | Qingjie Li, Dandan Qin, Yunzhuo Lu, Xuemei Zhu, Xing Lu. Laser additive manufacturing of ductile Fe-based bulk metallic glass composite [J]. J. Mater. Sci. Technol., 2022, 121(0): 148-153. |
[6] | Yingrui Liu, Linlin Liu, Shuyu Li, Rujia Wang, Peng Guo, Aiying Wang, Peiling Ke. Accelerated deterioration mechanism of 316L stainless steel in NaCl solution under the intermittent tribocorrosion process [J]. J. Mater. Sci. Technol., 2022, 121(0): 67-79. |
[7] | Mingkun Jiang, Ying Han, Xiangyi Chen, Guoqing Zu, Weiwei Zhu, Xu Ran. Cu-rich nanoprecipitates modified using Al to simultaneously enhance the strength and ductility of ferritic stainless steel [J]. J. Mater. Sci. Technol., 2022, 121(0): 93-98. |
[8] | Shucai Zhang, Jiangtao Yu, Huabing Li, Zhouhua Jiang, Yifeng Geng, Hao Feng, Binbin Zhang, Hongchun Zhu. Refinement mechanism of cerium addition on solidification structure and sigma phase of super austenitic stainless steel S32654 [J]. J. Mater. Sci. Technol., 2022, 102(0): 105-114. |
[9] | Xiaodong Lin, Qunjia Peng, En-Hou Han, Wei Ke. Deformation and cracking behaviors of proton-irradiated 308L stainless steel weld metal strained in simulated PWR primary water [J]. J. Mater. Sci. Technol., 2022, 120(0): 36-52. |
[10] | Jiangtao Yu, Shucai Zhang, Huabing Li, Zhouhua Jiang, Hao Feng, Panpan Xu, Peide Han. Influence mechanism of boron segregation on the microstructure evolution and hot ductility of super austenitic stainless steel S32654 [J]. J. Mater. Sci. Technol., 2022, 112(0): 184-194. |
[11] | Bin Wu, Hongliang Ming, Fanjiang Meng, Yifeng Li, Guangqing He, Jianqiu Wang, En-Hou Han. Effects of surface grinding for scratched alloy 690TT tube in PWR nuclear power plant: Microstructure and stress corrosion cracking [J]. J. Mater. Sci. Technol., 2022, 113(0): 229-245. |
[12] | Jinlong Zhao, Chunguang Yang, Ke Yang. Novel Cu-bearing stainless steel: A promising food preservation material [J]. J. Mater. Sci. Technol., 2022, 113(0): 246-252. |
[13] | M.S. Moyle, N. Haghdadi, X.Z. Liao, S.P. Ringer, S. Primig. On the microstructure and texture evolution in 17-4 PH stainless steel during laser powder bed fusion: Towards textural design [J]. J. Mater. Sci. Technol., 2022, 117(0): 183-195. |
[14] | Yanxin Qiao, Xinyi Wang, Lanlan Yang, Xiaojing Wang, Jian Chen, Zhengbin Wang, Huiling Zhou, Jiasheng Zou, Fuhui Wang. Effect of aging treatment on microstructure and corrosion behavior of a Fe-18Cr-15Mn-0.66N stainless steel [J]. J. Mater. Sci. Technol., 2022, 107(0): 197-206. |
[15] | Luqing Cui, Dunyong Deng, Fuqing Jiang, Ru Lin Peng, Tongzheng Xin, Reza Taherzadeh Mousavian, Zhiqing Yang, Johan Moverare. Superior low cycle fatigue property from cell structures in additively manufactured 316L stainless steel [J]. J. Mater. Sci. Technol., 2022, 111(0): 268-278. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||