J. Mater. Sci. Technol. ›› 2022, Vol. 122: 231-242.DOI: 10.1016/j.jmst.2022.02.014
• Research Article • Previous Articles Next Articles
Meng Daia,b, Zuoli Hea,b,*(), Peng Zhangc, Xin Lid,**(
), Shuguang Wanga,*(
)
Received:
2021-12-15
Revised:
2022-02-08
Accepted:
2022-02-08
Published:
2022-09-20
Online:
2022-03-21
Contact:
Zuoli He,Xin Li,Shuguang Wang
About author:
** E-mail addresses: xinli@scau.edu.cn (X. Li),Meng Dai, Zuoli He, Peng Zhang, Xin Li, Shuguang Wang. ZnWO4-ZnIn2S4 S-scheme heterojunction for enhanced photocatalytic H2 evolution[J]. J. Mater. Sci. Technol., 2022, 122: 231-242.
Fig. 3. (a) Low- and (b) high-magnification TEM images of the ZW-ZIS-40 heterojunction. (c) and (d) HRTEM images. (e) HAADF-STEM image of the ZW-ZIS-40 heterojunction with the corresponding mapping images of Zn, In, S, W and O elements. (f) and (g) SAED patterns of ZW-ZIS-40.
Fig. 4. XPS spectra of the samples: (a) survey spectra, (b) Zn 2p, (c) In 3d, (d) S 2p, (e) W 4f and (f) W 4f magnified high-resolution spectra of ZW-ZIS-40.
Fig. 7. (a) and (b) Amount and rate of H2 evolution for different catalysts. (c) and (d) Amount and rate of H2 evolution for different molar ratios of W to Zn.
Fig. 9. (a) and (b) DMPO spin-trapping EPR spectra of ZW, ZIS and ZW-ZIS-40 (in aqueous solutions for DMPO-·OH and methanol solution for DMPO-·O2-). (c) EPR spectra of DMPO-·OH and (d) DMPO-·O2- over ZW, ZIS, and ZW-ZIS-40 in the dark.
Fig. 10. UPS spectra of (a) ZW and (c) ZIS, binding energy of the secondary cut-off edges of (b) ZW and (d) ZI©(e) band structures of ZW and ZIS from UPS spectra.
Fig. 11. Schematic of the energy band (a) before contact, (b) after contact, and (c) specific charge transfer and the separation process between the S-scheme heterojunction of ZW-ZIS for the H2 evolution reaction.
[1] | P. Zhou, H. Chen, Y. Chao, Q. Zhang, W. Zhang, F. Lv, L. Gu, Q. Zhao, N. Wang, J. Wang, S. Guo,Nat. Commun. 12 (2021) 4412. |
[2] |
Y. Xi, W. Chen, W. Dong, Z. Fan, K. Wang, Y. Shen, G. Tu, S. Zhong, S. Bai,ACS Appl. Mater. Interfaces 13 (2021) 39491-39500.
DOI URL |
[3] |
J. Peng, J. Shen, X. Yu, H. Tang, Q. Zulfiqar, Chin. Liu J.Catal. 42 (2021) 87-96.
DOI URL |
[4] |
K. Yu, H. Huang, Xueyu Zeng, J. Xu, X. Yu, H. Liu, H. Cao, J. Lu, R. Cao,Chem. Commun. 56 (2020) 7765-7768.
DOI URL |
[5] |
J. Luo, Z. Lin, Y. Zhao, S. Jiang, S. Song,Chin. J. Catal. 41 (2020) 122-130.
DOI URL |
[6] |
F. He, A. Meng, B. Cheng, W. Ho, J. Yu,Chin. J. Catal. 41 (2020) 9-20.
DOI URL |
[7] |
L. Li, Z. Zhou, L. Li, Z. Zhuang, J. Bi, J. Chen, Y. Yu, J. Yu,ACS Sustain. Chem. Eng. 7 (2019) 18574-18581.
DOI URL |
[8] | K. Khan, X. Tao, M. Shi, B. Zeng, Z. Feng, C. Li, R. Li,Adv. Funct. Mater. 30 (2020) 2003731. |
[9] | Z. He, J. Zhang, X. Li, S. Guan, M. Dai,S. Wang, Small 16 (2020) 2005051. |
[10] |
Z. He, C. Kim, T.H. Jeon, W. Choi,Appl. Catal. B Environ. 237 (2018) 772-782.
DOI URL |
[11] |
X. Li, X. Wu, S. Liu, Y. Li, J. Fan, K. Lv,Chin. J. Catal. 41 (2020) 1451-1467.
DOI URL |
[12] | Q. Xu, L. Zhang, B. Cheng, J. Fan,J. Yu, Chem 6 (2020) 1543-1559. |
[13] | C. Cheng, B. He, J. Fan, B. Cheng, S. Cao, J. Yu,Adv. Mater. 33 (2021) 2100317. |
[14] |
S. Wageh, A.A. Al-Ghamdi, R. Jafer, X. Li, P. Zhang,Chin. J. Catal. 42 (2021) 667-669.
DOI URL |
[15] |
J. Wang, G. Wang, B. Cheng, J. Yu, J. Fan,Chin. J. Catal. 42 (2021) 56-68.
DOI URL |
[16] | X. Li, J. Liu, J. Huang, C. He, Z. Feng, Z. Chen, L. Wan, F. Deng,Acta Phys. Chim. Sin. 37 (2020) 2010030. |
[17] |
Z. Li, Z. Wu, R. He, L. Wan, S. Zhang,J. Mater. Sci. Technol. 56 (2020) 151-161.
DOI URL |
[18] | F. Xu, K. Meng, B. Cheng, S. Wang, J. Xu, J. Yu,Nat. Commun. 11 (2020) 4613. |
[19] |
P. Xia, S. Cao, B. Zhu, M. Liu, M. Shi, J. Yu, Y. Zhang,Angew. Chem. Int. Ed. 59 (2020) 5218-5225.
DOI URL |
[20] | H. Deng, X. Fei, Y. Yang, J. Fan, J. Yu, B. Cheng, L. Zhang,Chem. Eng. J. 409 (2021) 127377. |
[21] | Y. Huang, F. Mei, J. Zhang, K. Dai, G. Dawson,Acta Phys. Chim. Sin. 38 (2022) 2108028. |
[22] |
M. Tahir, B. Tahir,J. Mater. Sci. Technol. 106 (2022) 195-210.
DOI URL |
[23] |
Q. Li, W. Zhao, Z. Zhai, K. Ren, T. Wang, H. Guan, H. Shi,J. Mater. Sci. Technol. 56 (2020) 216-226.
DOI URL |
[24] |
R. He, H. Liu, H. Liu, D. Xu, L. Zhang,J. Mater. Sci. Technol. 52 (2020) 145-151.
DOI URL |
[25] | X. Fei, H. Tan, B. Cheng, B. Zhu, L. Zhang,Acta Phys. Chim. Sin. 37 (2020) 2010027. |
[26] | S. Wageh, A.A. Al-Ghamdi, L. Liu,Acta Phys. Chim. Sin. 37 (2021) 2010024. |
[27] | B. Liu, C. Bie, Y. Zhang, L. Wang, Y. Li,J. Yu, Langmuir 37 (2021) 14114-14124. |
[28] |
D. Qin, Y. Xia, Q. Li, C. Yang, Y. Qin, K. Lv,J. Mater. Sci. Technol. 56 (2020) 206-215.
DOI URL |
[29] | Z. Wang, B. Cheng, L. Zhang, J. Yu, H. Tan, Sol.RRL 6 (2022) 2100587. |
[30] | F. He, B. Zhu, B. Cheng, J. Yu, W. Ho, W. Macyk,Appl. Catal. B Environ. 272 (2020) 119006. |
[31] | J. Bai, R. Shen, W. Chen, J. Xie, P. Zhang, Z. Jiang, X. Li,Chem. Eng. J. 429 (2022) 132587. |
[32] |
N.K. Veldurthi, N.K. Eswar, S.A. Singh, G. Madras,Catal. Sci. Technol. 8 (2018) 1083-1093.
DOI URL |
[33] |
Y. Wu, S. Zhou, T. He, X. Jin, L. Lun,Appl. Surf. Sci. 484 (2019) 409-413.
DOI URL |
[34] | D. Ma, L. Yang, Z. Sheng, Y. Chen,Chem. Eng. J. 405 (2021) 126538. |
[35] |
N.A. Shad, S.Z. Bajwa, N. Amin, A. Taj, S. Hameed, Y. Khan, Z. Dai, C. Cao, W.S. Khana,J. Hazard. Mater. 367 (2019) 205-214.
DOI URL |
[36] | K. Brijesh, K. Bindu, D. Shanbhag, H.S. Nagaraja, Int. J. Hydrog.Energy. 44 (2019) 757-767. |
[37] |
R.S. Yadav, S.J. Dhoble, S.B. Rai,Sens. Actuator B Chem. 273 (2018) 1425-1434.
DOI URL |
[38] | J. Wang, Y. Chen, W. Zhou, G. Tian, Y. Xiao, H. Fu, H. Fu,J. Mater. Chem. A 5 (2017) 8451-8460. |
[39] |
C. Du, Q. Zhang, Z. Lin, B. Yan, C. Xia, G. Yang,Appl. Catal. B Environ. 248 (2019) 193-201.
DOI URL |
[40] | Y. Zhu, L. Wang, Y. Liu, L. Shao, X. Xia,Appl. Catal. B Environ. 241 (2019) 483-490. |
[41] | W. Chen, T. Liu, T. Huang, X. Liu,X. Yang, Nanoscale 8 (2016) 3711-3719. |
[42] | L. Wang, H. Zhou, H. Zhang, Y. Song, H. Zhang, L. Luo, Y. Yang, S. Bai, Y. Wang,S. Liu, Nanoscale 12 (2020) 13791-13800. |
[43] | Z. Mei, G. Wang, S. Yan, J. Wang,Acta Phys. Chim. Sin. 37 (2020) 2009097. |
[44] | M. Dai,R. Wang, Small 17 (2021) 2006813. |
[45] | N. Wei, Y. Wu, M. Wang, W. Sun, Z. Li, L. Ding,H. Cui, Nanotechnology 30 (2019) 045701. |
[46] |
A. Yan, X. Shi, F. Huang, M. Fujitsuka, T. Majima,Appl. Catal. B Environ. 250 (2019) 163-170.
DOI URL |
[47] |
L. Xu, X. Deng, Z. Li,Appl. Catal. B Environ. 234 (2018) 50-55.
DOI URL |
[48] |
L. Wang, H. Zhou, H. Zhang, Y. Song, H. Zhang, X. Qian,Inorg. Chem. 59 (2020) 2278-2287.
DOI URL PMID |
[49] |
M.Y. Qi, Y.H. Li, F. Zhang, Z.R. Tang, Y. Xiong, Y.J. Xu,ACS Catal. 10 (2020) 3194-3202.
DOI URL |
[50] | D. Wang, X.Q. Gong,Nat. Commun. 12 (2021) 158. |
[51] | Q. Zhang, H. Gu, X. Wang, L. Li, J. Zhang, H. Zhang, Y.F. Li, W.L. Dai,Appl. Catal. B Environ. 298 (2021) 120632. |
[52] | S. Wang, Y. Wang, S.L. Zhang, S.Q. Zang, X.W.D. Lou,Adv. Mater. 31 (2019) 1903404. |
[53] | C.L. Tan, M.Y. Qi, Z.R. Tang, Y.J. Xu,Appl. Catal. B Environ. 298 (2021) 120541. |
[54] | C. Du, B. Yan,G. Yang, Nano Energy 76 (2020) 105031. |
[55] | E. Zhang, Q. Zhu, J. Huang, J. Liu, G. Tan, C. Sun, T. Li, S. Liu, Y. Li, H. Wang, X. Wan, Z. Wen, F. Fan, J. Zhang, K. Ariga,Appl. Catal. B Environ. 293 (2021) 120213. |
[56] | G. Zhang, J. Sun, D. Chen, N. Li, Q. Xu, H. Li, J. He, J. Lu,J. Hazard. Mater. 398 (2020) 122889. |
[57] |
H. Li, S. Chu, Q. Ma, J. Wang, Q. Che, G. Wang, P. Yang,Sens. Actuator B Chem. 286 (2019) 564-574.
DOI URL |
[58] |
Y.A. Sethi, C.S. Praveen, R.P. Panmand, A. Ambalkar, A.K. Kulkarni, S.W. Gosavi, M. V. Kulkarni, B.B. Kale,Catal. Sci. Technol. 8 (2018) 2909-2919.
DOI URL |
[59] | C. Li, H. Che, Y. Yan, C. Liu, H. Dong,Chem. Eng. J. 398 (2020) 125523. |
[60] |
D. Kong, H. Fan, D. Yin, D. Zhang, X. Pu, S. Yao, C. Su,ACS Sustain, Chem. Eng. 9 (2021) 2673-2683.
DOI URL |
[61] |
T. Ni, Z. Yang, Y. Cao, H. Lv, Y. Liu,Ceram. Int. 47 (2021) 22985-22993.
DOI URL |
[62] |
J. Bai, W. Chen, R. Shen, Z. Jiang, P. Zhang, W. Liu, X. Li,J. Mater. Sci. Technol. 112 (2022) 85-95.
DOI URL |
[63] | P. Wang, Z. Shen, Y. Xia, H. Wang, L. Zheng, W. Xi, S. Zhan,Adv. Funct. Mater. 29 (2019) 1807013. |
[64] | C.Y. Pei, Y.G. Chen, L. Wang, W. Chen, G.B. Huang,Appl. Surf. Sci. 535 (2021) 147682. |
[65] | M. Sayed, B. Zhu, P. Kuang, X. Liu, B. Cheng, A.a.A. Ghamdi, S. Wageh, L. Zhang, J. Yu,Adv. Sustain. Syst. 6 (2022) 2100264. |
[66] | L. Wang, B. Cheng, L. Zhang,J. Yu, Small 17 (2021) 2103447. |
[67] | W. Yang, G. Ma, Y. Fu, K. Peng, H. Yang, X. Zhan, W. Yang, L. Wang, H. Hou,Chem. Eng. J. 429 (2022) 132381. |
[68] | R. Shen, X. Lu, Q. Zheng, Q. Chen, Y.H. Ng, P. Zhang, X. Li, Sol.RRL 5 (2021) 2100177. |
[69] |
J. Fu, Q. Xu, J. Low, C. Jiang, J. Yu,Appl. Catal. B Environ. 243 (2019) 556-565.
DOI URL |
[1] | Junxian Bai, Weilin Chen, Rongchen Shen, Zhimin Jiang, Peng Zhang, Wei Liu, Xin Li. Regulating interfacial morphology and charge-carrier utilization of Ti3C2 modified all-sulfide CdS/ZnIn2S4 S-scheme heterojunctions for effective photocatalytic H2 evolution [J]. J. Mater. Sci. Technol., 2022, 112(0): 85-95. |
[2] | Yuxiao Chen, Wei Zhong, Feng Chen, Ping Wang, Jiajie Fan, Huogen Yu. Photoinduced self-stability mechanism of CdS photocatalyst: The dependence of photocorrosion and H2-evolution performance [J]. J. Mater. Sci. Technol., 2022, 121(0): 19-27. |
[3] | Yang Guo, Qixin Zhou, Xiaolin Chen, Yunzhi Fu, Shenyu Lan, Mingshan Zhu, Yukou Du. Near-infrared response Pt-tipped Au nanorods/g-C3N4 realizes photolysis of water to produce hydrogen [J]. J. Mater. Sci. Technol., 2022, 119(0): 53-60. |
[4] | Jizhou Jiang, Zhiguo Xiong, Haitao Wang, Guodong Liao, Saishuai Bai, Jing Zou, Pingxiu Wu, Peng Zhang, Xin Li. Sulfur-doped g-C3N4/g-C3N4 isotype step-scheme heterojunction for photocatalytic H2 evolution [J]. J. Mater. Sci. Technol., 2022, 118(0): 15-24. |
[5] | Wanying Lei, Tong Zhou, Xin Pang, Shixiang Xue, Quanlong Xu. Low-dimensional MXenes as noble metal-free co-catalyst for solar-to-fuel production: Progress and prospects [J]. J. Mater. Sci. Technol., 2022, 114(0): 143-164. |
[6] | Xibao Li, Qiuning Luo, Lu Han, Fang Deng, Ya Yang, Fan Dong. Enhanced photocatalytic degradation and H2 evolution performance of N-CDs/S-C3N4 S-scheme heterojunction constructed by π-π conjugate self-assembly [J]. J. Mater. Sci. Technol., 2022, 114(0): 222-232. |
[7] | Yuanyuan Zhang, Li Guo, Yingxian Wang, Tianyu Wang, Taoxia Ma, Zhuangzhuang Zhang, Danjun Wang, Bin Xu, Feng Fu. In-situ anion exchange based Bi2S3/OV-Bi2MoO6 heterostructure for efficient ammonia production: A synchronized approach to strengthen NRR and OER reactions [J]. J. Mater. Sci. Technol., 2022, 110(0): 152-160. |
[8] | Libo Wang, Xingang Fei, Liuyang Zhang, Jiaguo Yu, Bei Cheng, Yuhua Ma. Solar fuel generation over nature-inspired recyclable TiO2/g-C3N4 S-scheme hierarchical thin-film photocatalyst [J]. J. Mater. Sci. Technol., 2022, 112(0): 1-10. |
[9] | Xuewen Wang, Qiuchan Li, Qingzhuo Lin, Rongbin Zhang, Mingyue Ding. CdS-sensitized 3D ordered macroporous g-C3N4 for enhanced visible-light photocatalytic hydrogen generation [J]. J. Mater. Sci. Technol., 2022, 111(0): 204-210. |
[10] | Yabin Jiang, Lei Zeng, Chi Cao, Wensheng Yang, Limin Huang. Accumulation of localized charge on the surface of polymeric carbon nitride boosts the photocatalytic activity [J]. J. Mater. Sci. Technol., 2022, 111(0): 9-16. |
[11] | Chatchai Rodwihok, Korakot Charoensri, Duangmanee Wongratanaphisan, Won Mook Choi, Seung Hyun Hur, Hyun Jin Park, Jin Suk Chung. Improved photocatalytic activity of surface charge functionalized ZnO nanoparticles using aniline [J]. J. Mater. Sci. Technol., 2021, 76(0): 1-10. |
[12] | Wei Zhao, Tiantian She, Jingyi Zhang, Guoxiang Wang, Sujuan Zhang, Wei Wei, Gang Yang, Lili Zhang, Dehua Xia, Zhipeng Cheng, Haibao Huang, Dennis Y.C. Leung. A novel Z-scheme CeO2/g-C3N4 heterojunction photocatalyst for degradation of Bisphenol A and hydrogen evolution and insight of the photocatalysis mechanism [J]. J. Mater. Sci. Technol., 2021, 85(0): 18-29. |
[13] | Bing Leng, Xinglai Zhang, Shanshan Chen, Jing Li, Ziqing Sun, Zongyi Ma, Wenjin Yang, Bingchun Zhang, Ke Yang, Shu Guo. Highly efficient visible-light photocatalytic degradation and antibacterial activity by GaN:ZnO solid solution nanoparticles [J]. J. Mater. Sci. Technol., 2021, 94(0): 67-76. |
[14] | Xiangchen Kong, Huiming Huang, Zhaoyang Li, Yanqin Liang, Zhenguo Li, Shengli Zhu. Facile synthesis of defected TiO2-x (B) nanosheet/graphene oxide hybrids with high photocatalytic H2 activity [J]. J. Mater. Sci. Technol., 2021, 80(0): 171-178. |
[15] | Qinqin Liu, Jinxin Huang, Hua Tang, Xiaohui Yu, Jun Shen. Construction 0D TiO2 nanoparticles/2D CoP nanosheets heterojunctions for enhanced photocatalytic H2 evolution activity [J]. J. Mater. Sci. Technol., 2020, 56(0): 196-205. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||