J. Mater. Sci. Technol. ›› 2022, Vol. 122: 243-254.DOI: 10.1016/j.jmst.2021.12.057
• Research Article • Previous Articles Next Articles
Meng Dai, P.P. Cao, H.L. Huang, S.H. Jiang, X.J. Liu, H. Wang, Y. Wu, Z.P. Lu()
Received:
2021-10-27
Revised:
2021-12-05
Accepted:
2021-12-19
Published:
2022-09-20
Online:
2022-03-15
Contact:
Z.P. Lu
About author:
* E-mail address: luzp@ustb.edu.cn (Z.P. Lu).Meng Dai, P.P. Cao, H.L. Huang, S.H. Jiang, X.J. Liu, H. Wang, Y. Wu, Z.P. Lu. Microstructural stability and aging behavior of refractory high entropy alloys at intermediate temperatures[J]. J. Mater. Sci. Technol., 2022, 122: 243-254.
Fig. 1. Inverse pole figures from EBSD of the HfNbTaTiZr(a), NbTaTiZr (b), HfNbTiZr (c) and NbTiZr (d) after homogenized treatment and the corresponding XRD results (e).
Fig. 2. XRD patterns (a) and lattice parameters (b) of the HfNbTaTiZr HEA annealed at different temperatures for 100 h. The red arrows in (a) indicate the diffraction peaks of the third phase in HfNbTaTiZr annealed at 650 °C for 100 h.
Fig. 3. (a-i) Backscattered electron images of the HfNbTaTiZr HEA after annealing at different temperatures for 100 h. The yellow squares in (f) show three contrast phases in HfNbTaTiZr annealed at 750 °C for 100 h.
Fig. 8. STEM image (a) and the elemental-distribution corresponding to the yellow wireframe region of NbTaTiZr annealed at 750 °C for 100 h. HRTEM image (b) and SAED pattern (c) of the phase interfaces.
Fig. 10. . STEM image (a) and the elemental-distribution maps corresponding to the yellow square region of HfNbTiZr following 100 h exposure at 750 °C. SAED patterns of the precipitates (b, c) and the phase interfaces (d).
Fig. 12. STEM image (a) and the elemental-distribution corresponding to the yellow square region of NbTiZr following 100 h exposure at 750 °C. SAED pattern (b) of the phase interfaces.
Empty Cell | Temperature range of phase decomposition ( °C) | |||||
---|---|---|---|---|---|---|
XRD | SEM | |||||
Tc | Ts | ΔT | Tc | Ts | ΔT | |
HfNbTiZr | 500 | 500 | 900 | 400 | ||
NbTiZr | 500 | 1000 | 500 | |||
HfNbTaTiZr | 500 | 1000 | 500 | 500 | 1100 | 600 |
NbTaTiZr | 500 | 1300+ | 800+ | 500 | 1300+ | 800+ |
Table 1. The onset temperature (Tc), the ending temperature (Ts) and the temperature range (ΔT) of phase decomposition after annealing for 100 h obtained by SEM and XRD data.
Empty Cell | Temperature range of phase decomposition ( °C) | |||||
---|---|---|---|---|---|---|
XRD | SEM | |||||
Tc | Ts | ΔT | Tc | Ts | ΔT | |
HfNbTiZr | 500 | 500 | 900 | 400 | ||
NbTiZr | 500 | 1000 | 500 | |||
HfNbTaTiZr | 500 | 1000 | 500 | 500 | 1100 | 600 |
NbTaTiZr | 500 | 1300+ | 800+ | 500 | 1300+ | 800+ |
Fig. 13. . Self-diffusion coefficients of Hf, Nb, Ta, Ti, Zr at different temperatures. The intrinsic diffusion constant D0 and activation energy for diffusion QD for each element were taken from Ref [26]., and their units are 10-4 m2/s and kJ/mol, respectively.
Fig. 14. Dependence of Ts on the configuration entropy (a), atomic size difference (b), the enthalpy of mixing (c), parameter Ω (d), electronegativity difference (e), and the melting point difference (f) of the four RHEAs after annealing for 100 h.
[1] |
D.B. Miracle, O.N. Senkov, Acta Mater. 122 (2017) 448-511.
DOI URL |
[2] | B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Mater. Sci. Eng. A 375-377 (2004) 213-218. |
[3] | Z. Lei, X. Liu, Y. Wu, H. Wang, S. Jiang, S. Wang, X. Hui, Y. Wu, B. Gault, P. Kon- tis, D. Raabe, L. Gu, Q. Zhang, H. Chen, H. Wang, J. Liu, K. An, Q. Zeng, T.G. Nieh, Z. Lu, Nature 563 (2018) 546-550. |
[4] | H. Huang, Y. Wu, J. He, H. Wang, X. Liu, K. An, W. Wu, Z. Lu, Adv. Mater. 29 (2017) 1-7. |
[5] |
T.H. Chou, J.C. Huang, C.H. Yang, S.K. Lin, T.G. Nieh, Acta Mater. 195 (2020) 71-80.
DOI URL |
[6] | K.A. Christofidou, E.J. Pickering, P. Orsatti, P.M. Mignanelli, T.J.A. Slater, H.J. Stone, N.G. Jones, Intermetallics 92 (2018) 84-92. |
[7] | M.E. Bloomfield, K.A. Christofidou, N.G. Jones, Intermetallics 114 (2019) 106582. |
[8] |
K.A. Christofidou, T.P. McAuliffe, P.M. Mignanelli, H.J. Stone, N.G. Jones, J. Alloys Compd. 770 (2019) 285-293.
DOI URL |
[9] |
N.D. Stepanov, N.Y. Yurchenko, M.A. Tikhonovsky, G.A. Salishchev, J. Alloys Compd. 687 (2016) 59-71.
DOI URL |
[10] | O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, P.K. Liaw, Intermetallics 18 (2010) 1758-1765. |
[11] | O.N. Senkov, G.B. Wilks, J.M. Scott, D.B. Miracle, Intermetallics 19 (2011) 698-706. |
[12] |
O.N. Senkov, S.V. Senkova, C. Woodward, D.B. Miracle, Acta Mater. 61 (2013) 1545-1557.
DOI URL |
[13] |
O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, C.F. Woodward, J. Alloys Compd. 509 (2011) 6043-6048.
DOI URL |
[14] |
O.N. Senkov, S.L. Semiatin, J. Alloys Compd. 649 (2015) 1110-1123.
DOI URL |
[15] |
J.P. Couzinié, L. Lilensten, Y. Champion, G. Dirras, L. Perrière, I. Guillot, Mater. Sci. Eng. A 645 (2015) 255-263.
DOI URL |
[16] |
Y. Zou, S. Maiti, W. Steurer, R. Spolenak, Acta Mater. 65 (2014) 85-97.
DOI URL |
[17] |
B. Schuh, B. Völker, J. Todt, N. Schell, L. Perrière, J. Li, J.P. Couzinié, A. Hohen- warter, Acta Mater. 142 (2018) 201-212.
DOI URL |
[18] | P.T. Hung, M. Kawasaki, J.K. Han, J.L. Lábár, J. Gubicza, Mater. Charact. 168 (2020) 110550. |
[19] |
S.Y. Chen, Y. Tong, K.K. Tseng, J.W. Yeh, J.D. Poplawsky, J.G. Wen, M.C. Gao, G. Kim, W. Chen, Y. Ren, R. Feng, W.D. Li, P.K. Liaw, Scr. Mater. 158 (2019) 50-56.
DOI URL |
[20] |
N.D. Stepanov, N.Y. Yurchenko, S.V. Zherebtsov, M.A. Tikhonovsky, G.A. Sal- ishchev, Mater. Lett. 211 (2018) 87-90.
DOI URL |
[21] | C.H. Tu, S.K. Wu, C. Lin, Intermetallics 126 (2020) 106935. |
[22] |
O.N. Senkov, D.B. Miracle, Mater. Res. Bull. 36 (2001) 2183-2198.
DOI URL |
[23] |
Z. Wang, Q. Wu, W. Zhou, F. He, C. Yu, D. Lin, J. Wang, C.T. Liu, Scr. Mater. 162 (2019) 468-471.
DOI URL |
[24] |
P.J. Clemm, J.C. Fisher, Acta Metall. 3 (1955) 70-73.
DOI URL |
[25] |
A.D. Le Claire, Acta Metall. 1 (1953) 438-447.
DOI URL |
[26] | G. Neumann, C. Tuijn, Self-Diffusion and Impurity Diffusion in Pure Metals: Handbook of Experimental Data, Elsevier, Oxford, 2009. |
[27] |
Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw, Adv. Eng. Mater. 10 (2008) 534-538.
DOI URL |
[28] |
X. Yang, Y. Zhang, Mater. Chem. Phys. 132 (2012) 233-238.
DOI URL |
[29] |
S. Guo, C.T. Liu, Prog. Nat. Sci. Mater. Int. 21 (2011) 433-446.
DOI URL |
[30] |
A. Takeuchi, A. Inoue, Mater. Trans. 46 (2005) 2817-2829.
DOI URL |
[31] |
S. Fang, X. Xiao, L. Xia, W. Li, Y. Dong, J. Non Cryst. Solids 321 (2003) 120-125.
DOI URL |
[32] | J.L. Murry, ASM Metals Handbook: Alloy Phase Diagrams, ASM International, 1992. |
[33] | F. Wang, Bonding Theory for Metals and Alloys, Elsevier, Oxford, 2005. |
[1] | Shiyu Wu, Dongxu Qiao, Haitao Zhang, Junwei Miao, Hongliang Zhao, Jun Wang, Yiping Lu, Tongmin Wang, Tingju Li. Microstructure and mechanical properties of CxHf0.25NbTaW0.5 refractory high-entropy alloys at room and high temperatures [J]. J. Mater. Sci. Technol., 2022, 97(0): 229-238. |
[2] | X.R. Wang,M.F. Yan,H.T. Chen. First-Principle Calculations of Hardness and Melting Point of Mo2C [J]. J Mater Sci Technol, 2009, 25(03): 419-422. |
[3] | Y.H.Zhu, K.C.Chan, G.K.H.Pang, T.M.Yue, W.B.Lee. Structural Changes of α Phase in Furnace Cooled Eutectoid Zn-Al Based Alloy [J]. J Mater Sci Technol, 2007, 23(03): 347-352. |
[4] | Chuanxi XIONG, Hong YANG, Lijie DONG, Qihong LIU, Qingmin LIU. Properties and Application of Nanocrystalline Poly (vinyl chloride) [J]. J Mater Sci Technol, 2004, 20(05): 547-550. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||