J. Mater. Sci. Technol. ›› 2022, Vol. 106: 77-89.DOI: 10.1016/j.jmst.2021.08.008
• Research Article • Previous Articles Next Articles
Avik Mahataa, Tanmoy Mukhopadhyayb,c, Mohsen Asle Zaeemd,*()
Received:
2021-01-29
Revised:
2021-08-16
Accepted:
2021-08-18
Published:
2022-04-20
Online:
2021-09-25
Contact:
Mohsen Asle Zaeem
About author:
*E-mail address: zaeem@mines.edu (M. Asle Zaeem).Avik Mahata, Tanmoy Mukhopadhyay, Mohsen Asle Zaeem. Liquid ordering induced heterogeneities in homogeneous nucleation during solidification of pure metals[J]. J. Mater. Sci. Technol., 2022, 106: 77-89.
Fig. 1. Critical nucleus size calculated by CNT at different temperatures is compared with the results of MD simulation for (a) Al, (b) Fe and (c) Mg.
Materials | Temperature(K) | Nucleation Rate(1035 m-3 s-1) |
---|---|---|
Al (fcc) | 400 | 4.00±0.13 |
450 | 4.48±0.08 | |
500 | 5.32±0.05 | |
600 | 3.51±0.01 | |
Fe (bcc) | 900 | 0.18±0.03 |
1000 | 0.2±0.05 | |
1100 | 0.27±0.09 | |
1200 | 0.15±0.01 | |
Mg (hcp) | 400 | 0.06±0.03 |
450 | 0.15±0.02 | |
500 | 0.17±0.07 | |
600 | 0.05±0.02 |
Table 1. Nucleation rates of different materials at different annealing temperatures. The statistical error is estimated by obtaining the slopes for 5 different simulations of each annealing temperature.
Materials | Temperature(K) | Nucleation Rate(1035 m-3 s-1) |
---|---|---|
Al (fcc) | 400 | 4.00±0.13 |
450 | 4.48±0.08 | |
500 | 5.32±0.05 | |
600 | 3.51±0.01 | |
Fe (bcc) | 900 | 0.18±0.03 |
1000 | 0.2±0.05 | |
1100 | 0.27±0.09 | |
1200 | 0.15±0.01 | |
Mg (hcp) | 400 | 0.06±0.03 |
450 | 0.15±0.02 | |
500 | 0.17±0.07 | |
600 | 0.05±0.02 |
Fig. 3. Visualization of heterogeneity in homogenous nucleation. (a) The complete simulation box at an intermediate stage of nuclei formation from Al melt. The solid circles show nuclei with TBs, and the dotted circles show nuclei where embryos form as precursors for TBs/GBs. (b) Two time steps showing embryo formation on top and side of an initially formed nucleus. (c) Formation of TBs and GBs ii the initial nucleus in (b); the orientations are shown in the top image by orientation-coloring, and CNA method shows two crystal types in the below figure. All the red atoms with hcp stacking are TBs or GBs, or stacking faults that later transform to TB or GBs. Some amorphous GBs are not shown and they can be observed from the orientation coloring.
Fig. 4. Twin boundaries between nuclei. Snapshots showing the atomic configuration at the initial stages of nuclei formation. (a) Al nuclei forms with a TB, and there is 122° angle between atoms on the opposite sides of the TB. The coloring method is CNA, where red atoms are hcp, and green atoms are fcc; (b) Formation of a GB with -109° misorientation in Fe; colors show different orientations and (c) Mg nuclei formation with stacking faults and a GB with misorientation angle of -112°. CAN shows that red atoms are hcp, and green atoms are fcc.
Fig. 5. Density and probability density versus bond orientational order (Q6). Density($ρ,\dot{A}^{-3}$) versus the bond order parameter for (a) Al at 500 K, (c) Fe 1100 K and (e) Mg 550 K considering the same probability distribution function. The probability density function for bond orientation order parameter Q6 for (b) Al at 500 K, (d) Fe at 1100 K and (f) Mg at 550 K; the dotted red rectangles show the SRO atoms, the green rectangles indicate the mix or SRO and crystalline atoms, and the blue rectangles indicate crystalline atoms.
Fig. 6. Densification and crystallization steps in solidification. (a) A nucleus is shown during its growth in isothermal solidification of liquid Al at 500 K at 125 ps by CNA. Red atoms are hcp, green atoms are fcc, and grey atoms are liquid. (b) At the same timestep density is shown for the Al matrix. The area around the nucleus shows higher density. The formation of the first critical nucleus by CNA (c-f), density (g-j), and interatomic distances (k-n) are shown at 10 ps, 25 ps, 50 ps and 75 ps, from top to bottom. The colorbar on the left is for density, and the colorbar on the right is for interatomic distances in Å. The dotted circles show the common neighbor analysis and density of the nucleation sites.
Fig. 7. Time evolution of ico-bcc atoms during solidification. (a) Time evolution of bcc and ico atoms in nucleation of Fe at 1100 K isothermal solidification simulation. (b) Bcc and ico Fe atoms before the formation of critical nuclei. (c)-(e) The CNA and the bond orientational order parameters at 180 ps, 204 ps and 240 ps. In CNA, the white atoms are liquid/amorphous solid, blue atoms are bcc and yellow atoms are ico. Bond order coloring is shown in the color bar.
Fig. 8. Landau free energy. The joint probability P(Q6,ρ) of the density and the bond orientational order parameter is plotted for Al at 500 K at (a) 0 ps, (b) 90 ps, (c) 135 ps and (d) 180 ps.
σSL(Jm-2) | σGB(Jm-2) | σTB(Jm-2) | f(θ) | |
---|---|---|---|---|
Al | 0.17 [ | 0.25-0.3 [ | 0.08-0.20 [ | 0.61-0.90 |
Fe | 0.19 [ | 0.30 [ | 0.16 [ | 0.89, 0.29-0.38 |
Mg | 0.12 [ | - | 0.14±0.05 [ | 0.65-0.81 |
Table 2. The solid-liquid interface free energy, and GB and TB energies of Al, Fe and Mg.
σSL(Jm-2) | σGB(Jm-2) | σTB(Jm-2) | f(θ) | |
---|---|---|---|---|
Al | 0.17 [ | 0.25-0.3 [ | 0.08-0.20 [ | 0.61-0.90 |
Fe | 0.19 [ | 0.30 [ | 0.16 [ | 0.89, 0.29-0.38 |
Mg | 0.12 [ | - | 0.14±0.05 [ | 0.65-0.81 |
[1] | J.A. Dantzig, M. Rappaz, Solidification, EPFL press, 2009. |
[2] | R. Asthana, A. Kumar, N.B. Dahotre, Materials processing and manufacturing science, Elsevier, 2006. |
[3] |
J.M. Howe, H. Saka, MRS Bull. 29 (2004) 951-957.
DOI URL |
[4] |
S.H. Oh, Y. Kauffmann, C. Scheu, W.D. Kaplan, M. Rühle, Science 310 (2005) 661-663.
PMID |
[5] |
T. Schülli, R. Daudin, G. Renaud, A. Vaysset, O. Geaymond, A. Pasturel, Nature 464 (2010) 1174-1177.
DOI URL |
[6] |
M. Gandman, Y. Kauffmann, C.T. Koch, W.D. Kaplan, Phys. Rev. Lett. 110 (2013) 086106.
DOI URL |
[7] |
N. Mauro, W. Fu, J. Bendert, Y. Cheng, E. Ma, K. Kelton, J. Chem. Phys. 137 (2012) 044501.
DOI URL |
[8] |
R. Dai, J.C. Neuefeind, D.G. Quirinale, K.F. Kelton, J. Chem. Phys. 152 (2020) 164503.
DOI URL |
[9] |
M. Xu, X. Ge, W. Yao, S. Tang, W. Lu, M. Qian, Y. Fu, H. Xie, T. Xiao, Q. Hu, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 49 (2018) 4419-4423.
DOI URL |
[10] |
W. Yao, M. Xia, L. Zeng, X. Ge, M. Qian, Y. Wang, W. Lu, Y. Fu, H. Xie, T. Xiao, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 50 (2019) 3441-3445.
DOI URL |
[11] |
S. Ma, A.J. Brown, R. Yan, R.L. Davidchack, P.B. Howes, C. Nicklin, Q. Zhai, T. Jing, H. Dong, Commun. Chem. 2 (2019) 1-12.
DOI URL |
[12] |
J. Zhao, Z. Tang, K. Kelton, C. Liu, P. Liaw, A. Inoue, X. Shen, S. Pan, M. Johnson, G. Chen, Intermetallics 82 (2017) 53-58.
DOI URL |
[13] |
X. Liu, J. Chem. Phys. 112 (2000) 9949-9955.
DOI URL |
[14] |
G. Neilson, M. Weinberg, J. Non-Cryst. Solids 34 (1979) 137-147.
DOI URL |
[15] |
D. Erdemir, A.Y. Lee, A.S. Myerson, Accounts Chem. Res. 42 (2009) 621-629.
DOI PMID |
[16] |
G. Kahl, H. Löwen, J. Phys.-Condes. Matter 21 (2009) 464101.
DOI URL |
[17] | S. Toxvaerd, J.Chem. Phys. 115 (2001) 8913-8920. |
[18] |
X. Sui, Y. Cheng, N. Zhou, B. Tang, L. Zhou, CrystEngComm 20 (2018) 3569-3580.
DOI URL |
[19] |
K. Oh, X.C. Zeng, J. Chem. Phys. 110 (1999) 4471-4476.
DOI URL |
[20] |
D. Srolovitz, G. Grest, M. Anderson, Acta Metall. Mater. 34 (1986) 1833-1845.
DOI URL |
[21] |
B. Böttger, J. Eiken, I. Steinbach, Acta Mater. 54 (2006) 2697-2704.
DOI URL |
[22] |
L. Gránásy, T. Börzsönyi, T. Pusztai, Phys. Rev. Lett. 88 (2002) 206105.
DOI URL |
[23] |
L. Gránásy, T. Pusztai, D. Saylor, J.A. Warren, Phys. Rev. Lett. 98 (2007) 035703.
DOI URL |
[24] |
L. Liu, S. Pian, Z. Zhang, Y. Bao, R. Li, H. Chen, Comput. Mater. Sci. 146 (2018) 9-17.
DOI URL |
[25] |
L. Gránásy, F. Podmaniczky, G.I. Tóth, G. Tegze, T. Pusztai, Chem. Soc. Rev. 43 (2014) 2159-2173.
DOI PMID |
[26] |
Y. Shibuta, S. Sakane, T. Takaki, M. Ohno, Acta Mater 105 (2016) 328-337.
DOI URL |
[27] |
M. Finnis, J. Sinclair, Philos. Mag. 50 (1984) 45-55.
DOI URL |
[28] | T. Kawasaki, H. Tanaka, Proc. Natl. Acad. Sci. 107 (2010) 14036-14041. |
[29] |
E. Asadi, M. Asle Zaeem, S. Nouranian, M.I. Baskes, Phys. Rev. B 91 (2015) 024105.
DOI URL |
[30] |
Y.-M. Kim, N.J. Kim, B.-J. Lee, Calphad 33 (2009) 650-657.
DOI URL |
[31] |
S. Kavousi, B.R. Novak, M. Asle Zaeem, D. Moldovan, Comput. Mater. Sci. 163 (2019) 218-229.
DOI URL |
[32] |
D. Faken, H. Jónsson, Comput. Mater. Sci. 2 (2) (1994) 279-286.
DOI URL |
[33] |
P.J. Steinhardt, D.R. Nelson, M. Ronchetti, Phys. Rev. B 28 (2) (1983) 784.
DOI URL |
[34] |
W.C. Swope, H.C. Andersen, Phys. Rev. B 41 (1990) 7042.
PMID |
[35] |
A. Mahata, M. Asle Zaeem, Comput. Mater. Sci. 163 (2019) 176-185.
DOI URL |
[36] |
A. Mahata, M. Asle Zaeem, J. Cryst. Growth 527 (2019) 125255.
DOI URL |
[37] |
A.K. Mahata, M. Asle Zaeem, Model. Simul. Mater. Sci. Eng. 28 (2019) 019601.
DOI URL |
[38] |
A. Mahata, M. Asle Zaeem, M.I. Baskes, Model. Simul. Mater. Sci. Eng. 26 (2018) 025007.
DOI URL |
[39] | A. Mahata, M .Asle Zaeem, in: Insights on Solidification of Mg and Mg-Al Alloys by Large Scale Atomistic Simulations, Magnesium Technology 2020, Springer, 2020, pp. 51-53. |
[40] |
B.-J. Lee, M. Baskes, Phys. Rev. B 62 (2000) 8564.
DOI URL |
[41] | B.-J. Lee, M. Baskes, H. Kim, Y.K. Cho, Second nearest-neighbor modified em-bedded atom method potentials for bcc transition metals, Phys. Rev. B 64 (2001) 184102. |
[42] |
E. Asadi, M. Asle Zaeem, S. Nouranian, M.I. Baskes, Acta Mater. 86 (2015) 169-181.
DOI URL |
[43] |
E. Asadi, M.Asle A. Zaeem, Acta Mater. 107 (2016) 337-344.
DOI URL |
[44] |
M. Asadian Nozari, R. Taghiabadi, M. Karimzadeh, M. Ghoncheh, J. Mater. Sci. Technol. 31 (2015) 506-512.
DOI URL |
[45] |
E. Lee, K.-R. Lee, M. Baskes, B.-J. Lee, Phys. Rev. B 93 (2016) 144110.
DOI URL |
[46] |
A. Mahata, M. Asle Zaeem, Model. Simul. Mater. Sci. Eng. 27 (2019) 085015.
DOI URL |
[47] |
W. Lechner, C. Dellago, J. Chem. Phys. 129 (2008) 114707.
DOI URL |
[48] |
T. Aste, M. Saadatfar, T. Senden, Phys. Rev. E 71 (6) (2005) 061302.
DOI URL |
[49] |
Y. Shibuta, S. Sakane, E. Miyoshi, S. Okita, T. Takaki, M. Ohno, Nat. Commun. 8 (1) (2017) 10.
DOI URL |
[50] | A. Mahata, M. Asle Zaeem, M.I. Baskes, Understanding homogeneous nucleation in solidification of aluminum by molecular dynamics simulations, Model. Simul. Mater. Sci. Eng. 26 (2) (2018) 025007. |
[51] |
S. Auer, D. Frenkel, Nature 409 (2001) 1020-1023.
DOI URL |
[52] | V. Kalikmanov, in: Classical nucleation theory, Nucleation theory, Springer, 2013, pp. 17-41. |
[53] | J.W. Schmelzer, Nucleation theory and applications, John Wiley & Sons, 2006. |
[54] | I. Gutzow, J. Schmelzer, The vitreous state, Springer, 1995. |
[55] | A. Myerson, Handbook of industrial crystallization, Butterworth-Heinemann, 2002. |
[56] | K. Kelton, Solid State Phys. 45 (1991) 75-177. |
[57] |
V.M. Fokin, E.D. Zanotto, N.S. Yuritsyn, J.W. Schmelzer, J. Non-Cryst. Solids 352 (2006) 2681-2714.
DOI URL |
[58] |
W. Pan, A.B. Kolomeisky, P.G. Vekilov, J. Chem. Phys. 122 (2005) 174905.
DOI URL |
[59] |
S. Sen, T. Mukerji, J. Non-Cryst. Solids 246 (1999) 229-239.
DOI URL |
[60] |
Z. Lin, E. Leveugle, E.M. Bringa, L.V. Zhigilei, J. Phys. Chem. C 114 (2010) 5686-5699.
DOI URL |
[61] |
X.-M. Bai, M. Li, J. Chem. Phys. 124 (2006) 124707.
DOI URL |
[62] | D. Turnbull, J. Appl. Phys. 21 (1950) 1022-1028. |
[63] |
Z. Jian, K. Kuribayashi, W. Jie, Mater. Trans. 43 (2002) 721-726.
DOI URL |
[64] |
T. Frolov, Y. Mishin, J. Chem. Phys. 131 (2009) 054702.
DOI URL |
[65] |
X. Wang, R.G. Guan, N. Guo, Z.Y. Zhao, Y. Zhang, N. Su, J. Mater. Sci. Technol. 32 (2016) 154-163.
DOI URL |
[66] |
S.D. Panfilis, A. Filipponi, J. Appl. Phys. 88 (2000) 562-570.
DOI URL |
[67] | C.G. Levi, R. Mehrabian, Microstructures of rapidly solidified aluminum alloy submicron powders, Metall. Trans. A 13 (1982) 13-23. |
[68] |
L.-Y. Chen, J.-Q. Xu, H. Choi, M. Pozuelo, X. Ma, S. Bhowmick, J.-M. Yang, S. Mathaudhu, X.-C. Li, Nature 528 (2015) 539-543.
DOI URL |
[69] |
Z. Hou, Z. Tian, R. Liu, K. Dong, A. Yu, Comput. Mater. Sci. 99 (2015) 256-261.
DOI URL |
[70] |
P.M. Larsen, S. Schmidt, J. Schiøtz, Model. Simul. Mater. Sci. Eng. 24 (2016) 055007.
DOI URL |
[71] |
A. Stukowski, Model. Simul. Mater. Sci. Eng. 18 (1) (2009) 015012.
DOI URL |
[72] | V. Dubrovskii, in:Fundamentals of Nucleation Theory, Nucleation Theory and Growth of Nanostructures, Springer, 2014, pp. 1-73. |
[73] | B. Chalmers, Chalmers, in:Principles of solidification, Applied solid state physics, Springer, 1970, pp. 161-170. |
[74] |
D.L. Olmsted, S.M. Foiles, E.A. Holm, Acta Mater 57 (2009) 3694-3703.
DOI URL |
[75] |
M. Gündüz, J.D. Hunt, Acta Metall 37 (1989) 1839-1845.
DOI URL |
[76] |
H. Zhang, M. Upmanyu, D. Srolovitz, Mater. 53 (2005) 79-86.
DOI URL |
[77] |
G. Lu, N. Kioussis, V.V. Bulatov, E. Kaxiras, Phys. Rev. B 62 (2000) 3099-3108.
DOI URL |
[78] |
B. Hammer, K.W. Jacobsen, V. Milman, M.C. Payne, J. Phys.-Condes. Matter 4 (1992) 10453-10460.
DOI URL |
[79] |
D. Wolf, Philos. Mag. 62 (1990) 447-464.
DOI URL |
[80] |
J.L. Nilles, D.L. Olson, J. Appl. Phys. 41 (1970) 531-532.
DOI URL |
[81] | P. Bristowe, A. Crocker, Philos. Mag. 31 (1975) 503-517. |
[82] |
R.L. Fleischer, Scr. Metall. 20 (1986) 223-224.
DOI URL |
[83] |
T. Schilling, H.J. Schöpe, M. Oettel, G. Opletal, I. Snook, Phys. Rev. Lett. 105 (2010) 025701.
DOI URL |
[84] |
H. Tanaka, Eur. Phys. J. E 35 (2012) 113.
DOI URL |
[85] |
J. Russo, H. Tanaka, J. Chem. Phys. 145 (2016) 211801.
DOI URL |
[86] | J. Russo, H. Tanaka, in: AIP Conference Proceedings, AIP, 2013, pp. 232-237. |
[1] | Dongpeng Hua, Wan Wang, Dawei Luo, Qing Zhou, Shuo Li, Junqin Shi, Maosen Fu, Haifeng Wang. Molecular dynamics simulation of the tribological performance of amorphous/amorphous nano-laminates [J]. J. Mater. Sci. Technol., 2022, 105(0): 226-236. |
[2] | Siyi Di, Qianqian Wang, Yiyuan Yang, Tao Liang, Jing Zhou, Lin Su, Kuibo Yin, Qiaoshi Zeng, Litao Sun, Baolong Shen. Efficient rejuvenation of heterogeneous {[(Fe0.5Co0.5)0.75B0.2Si0.05]96Nb4}99.9Cu0.1 bulk metallic glass upon cryogenic cycling treatment [J]. J. Mater. Sci. Technol., 2022, 97(0): 20-28. |
[3] | Shucai Zhang, Jiangtao Yu, Huabing Li, Zhouhua Jiang, Yifeng Geng, Hao Feng, Binbin Zhang, Hongchun Zhu. Refinement mechanism of cerium addition on solidification structure and sigma phase of super austenitic stainless steel S32654 [J]. J. Mater. Sci. Technol., 2022, 102(0): 105-114. |
[4] | Zs. Veres, A. Roósz, A. Rónaföldi, A. Sycheva, M. Svéda. The effect of melt flow induced by RMF on the meso- and micro-structure of unidirectionally solidified Al-7wt.% Si alloy Benchmark experiment under magnetic stirring [J]. J. Mater. Sci. Technol., 2022, 103(0): 197-208. |
[5] | Chang Liu, Hongying Li, Rui Cheng, Jiazhuang Guo, Guo-Xing Li, Qing Li, Cai-Feng Wang, Xiaoning Yang, Su Chen. Facile synthesis, high fluorescence and flame retardancy of carbon dots [J]. J. Mater. Sci. Technol., 2022, 104(0): 163-171. |
[6] | Qingdong Zhong, Huaiyu Zhong, Hongbo Han, Mingyong Shu, Long Hou, Yanyan Zhu, Xi Li. Formation mechanism of ring-like segregation and structure during directional solidification under axial static magnetic field [J]. J. Mater. Sci. Technol., 2022, 99(0): 48-54. |
[7] | Xiangzhen Zhu, Shihao Wang, Xixi Dong, Xiangfa Liu, Shouxun Ji. Morphologically templated nucleation of primary Si on AlP in hypereutectic Al-Si alloys [J]. J. Mater. Sci. Technol., 2022, 100(0): 36-45. |
[8] | Qijing Sun, David M Miskovic, Michael Ferry. Probing the formation of ultrastable metallic glass from structural heterogeneity [J]. J. Mater. Sci. Technol., 2022, 104(0): 214-223. |
[9] | Mehmet R. Abul, Robert F. Cochrane, Andrew M. Mullis. Microstructural development and mechanical properties of drop tube atomized Al-2.85 wt% Fe [J]. J. Mater. Sci. Technol., 2022, 104(0): 41-51. |
[10] | Yuan-Yun Zhao, Feng Qian, Chengliang Zhao, Chunxiao Xie, Jianguo Wang, Chuntao Chang, Yanjun Li, Lai-Chang Zhang. Facile fabrication of ultrathin freestanding nanoporous Cu and Cu-Ag films with high SERS sensitivity by dealloying Mg-Cu(Ag)-Gd metallic glasses [J]. J. Mater. Sci. Technol., 2021, 70(0): 205-213. |
[11] | Yujie Chen, Yan Fang, Xiaoqian Fu, Yiping Lu, Sijing Chen, Hongbin Bei, Qian Yu. Origin of strong solid solution strengthening in the CrCoNi-W medium entropy alloy [J]. J. Mater. Sci. Technol., 2021, 73(0): 101-107. |
[12] | Lei Luo, Liangshun Luo, Yanqing Su, Lin Su, Liang Wang, Jingjie Guo, Hengzhi Fu. Optimizing microstructure, shrinkage defects and mechanical performance of ZL205A alloys via coupling travelling magnetic fields with unidirectional solidification [J]. J. Mater. Sci. Technol., 2021, 74(0): 246-258. |
[13] | L. Deng, K. Kosiba, R. Limbach, L. Wondraczek, U. Kühn, S. Pauly. Plastic deformation of a Zr-based bulk metallic glass fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2021, 60(0): 139-146. |
[14] | Peng Peng, Anqiao Zhang, Jinmian Yue, Xudong Zhang, Yuanli Xu. Macrosegregation and thermosolutal convection-induced freckle formation in dendritic mushy zone of directionally solidified Sn-Ni peritectic alloy [J]. J. Mater. Sci. Technol., 2021, 75(0): 21-26. |
[15] | Wenshuo Liang, Guimin Lu, Jianguo Yu. Theoretical prediction on the local structure and transport properties of molten alkali chlorides by deep potentials [J]. J. Mater. Sci. Technol., 2021, 75(0): 78-85. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||