J. Mater. Sci. Technol. ›› 2022, Vol. 104: 119-126.DOI: 10.1016/j.jmst.2021.06.048
• Research Article • Previous Articles Next Articles
Xudong Qia,b, Kai Lia, Enwei Suna,*(
), Bingqian Songc, Da Huoa, Jiaming Lic, Xianjie Wangc, Rui Zhanga,*(
), Bin Yanga, Wenwu Caoa,d,*(
)
Received:2021-03-25
Revised:2021-06-21
Accepted:2021-06-27
Published:2022-03-30
Online:2021-09-08
Contact:
Enwei Sun,Rui Zhang,Wenwu Cao
About author:dzk@psu.edu (W. Cao).1 These authors contributed equally to this work.
Xudong Qi, Kai Li, Enwei Sun, Bingqian Song, Da Huo, Jiaming Li, Xianjie Wang, Rui Zhang, Bin Yang, Wenwu Cao. Large photovoltaic effect with ultrahigh open-circuit voltage in relaxor-based ferroelectric Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 ceramics[J]. J. Mater. Sci. Technol., 2022, 104: 119-126.
Fig. 1. (a) Phase diagram of ternary PIMN-PT system [36]. The selected composition is indicated by the green star. (b) XRD pattern of PIMN-34PT solid solutions. In the inset, the rhombohedral and tetragonal lattice structure schematic diagrams are shown. (c) SEM image of the PIMN-34PT sample. (d) The grain size distribution with Gaussian fitting of the selected samples.
Fig. 2. PFM images of the PIMN-34PT sample. (a) Surface topography image, (b) amplitude image, (c) phase image, (d) autocorrelation result and average autocorrelation function <C(r)> of the PIMN-34PT sample.
Fig. 3. (a) Temperature-dependent dielectric constant and dielectric loss of PIMN-34PT ceramics (0.5-50 kHz). (b) Hysteresis loops of PIMN-34PT ceramics under 5-40 kV/cm at room temperature. (c) UV-vis transmission spectrum of PIMN-34PT ceramics. Tauc plot ([F(R) hν]2 vs. hν) for bandgap calculations. The inset shows the transmission spectrum. (d) A summary of remnant polarization and bandgap of representative ferroelectric photovoltaic materials compared with those of PIMN-34PT ceramics. The data in Fig. 3(d) are extracted from Refs. [12,13,15].
Fig. 4. (a) Device with an architecture of ITO/PIMN-PT/Au under test. (b-d) Photocurrent responses for laser on/off cycles and polarization orientation of unpoling, positive poling, and negative poling states.
Fig. 5. (a) Current density-voltage (J-V) characteristics of PIMN-34PT ceramics. (b) Comparison bar diagram of Eoc of different ferroelectric crystals. sc = single crystal, bc = bulk ceramic. (c) J-V curves measured under different illumination intensities. (d) Schematic energy band graphs of ITO/PIMN-PT/Au devices under unpoling, positive poling, and negative poling states.
| [1] |
T. Tsoutsos, N. Frantzeskaki, V. Gekas, Energy Policy 33 (2005) 289-296.
DOI URL |
| [2] |
A. Zahedi, Renew Energy 31 (2006) 711-718.
DOI URL |
| [3] |
H.T. Huang, Nat. Photonics 4 (2010) 134-135.
DOI URL |
| [4] | Y.B. Yuan, Z.G. Xiao, B. Yang, J.S. Huang, J. Mater. Chem. A 2 (2014) 6024-6041. |
| [5] |
C. Paillard, X.F. Bai, I.C. Infante, M. Guennou, G. Geneste, M. Alexe, J. Kreisel, B. Dkhil, Adv. Mater. 28 (2016) 5153-5168.
DOI URL |
| [6] |
P. Lopez-Varo, L. Bertoluzzi, J. Bisquert, M. Alexe, M. Coll, J.S. Huang, J.A. Jimenez-Tejada, T. Kirchartz, R. Nechache, F. Rosei, Y.B. Yuan, Phys. Rep. 653 (2016) 1-40.
DOI URL |
| [7] |
J.E. Spanier, V.M. Fridkin, A.M. Rappe, A.R. Akbashev, A. Polemi, Y.B. Qi, Z.Q. Gu, S.M. Young, C.J. Hawley, D. Imbrenda, G. Xiao, A.L. Bennett-Jackson, C.L. John-son, Nat. Photonics 10 (2016) 611-616.
DOI URL |
| [8] |
S. Dunn, D. Tiwari, Appl. Phys. Lett. 93 (2008) 092905.
DOI URL |
| [9] |
X.L. Yang, X.D. Su, M.G. Shen, F.G. Zheng, Y. Xin, L. Zhang, M.C. Hua, Y.J. Chen, V.G. Harris, Adv. Mater. 24 (2012) 1202-1208.
DOI URL |
| [10] |
J.J. Zhang, X.D. Su, M.R. Shen, Z.H. Dai, L.J. Zhang, X.Y. He, W.X. Cheng, M.Y. Cao, G.F. Zou, Sci. Rep. 3 (2013) 02109.
DOI URL |
| [11] |
H.T. Yi, T. Choi, S.G. Choi, Y.S. Oh, S.W. Cheong, Adv. Mater. 23 (2011) 3403-3407.
DOI URL |
| [12] |
A.B. Swain, D. Murali, B.R.K. Nanda, P. Murugavel, Phys. Rev. Appl. 11 (2019) 044007.
DOI URL |
| [13] |
S. Pal, A.B. Swain, P.P. Biswas, D. Murali, A. Pal, B.R.K. Nanda, P. Murugavel, Sci. Rep. 8 (2018) 8005.
DOI URL |
| [14] |
G.H. Zhang, H. Wu, G.B. Li, Q.Z. Huang, C.Y. Yang, F.Q. Huang, F.H. Liao, J.H. Lin, Sci. Rep. 3 (2013) 1265.
DOI URL |
| [15] |
L.Y. Wu, A. Podpirka, J.E. Spanier, P.K. Davies, Chem. Mater. 31 (2019) 4184-4194.
DOI URL |
| [16] |
L.Z. Tan, F. Zheng, S.M. Young, F.G. Wang, S. Liu, A.M. Rappe, NPJ Comput. Mater. 2 (2016) 16026.
DOI URL |
| [17] |
S.M. Young, A.M. Rappe, Phys. Rev. Lett. 109 (2012) 116601.
DOI URL |
| [18] |
A.M. Burger, R. Agarwal, A. Aprelev, E. Schruba, A. Gutierrez-Perez, V.M. Frid-kin, J.E. Spanier, Sci. Adv. 5 (2019) 5588.
DOI PMID |
| [19] |
F. Wang, A.M. Rappe, Phys. Rev. B 91 (2015) 165124.
DOI URL |
| [20] |
F. Zheng, Takenaka H, F.G. Wang, N.Z. Koocher, A.M. Rappe, J. Phys. Chem. Lett. 6 (2015) 31-37.
DOI PMID |
| [21] |
P. Poosanaas, K. Uchino, Mater. Chem. Phys. 61 (1999) 36.
DOI URL |
| [22] |
D.F. Pang, X.T. Liu, X. He, C. Chen, J. Zheng, Z.G. Yi, J. Am. Ceram. Soc. 102 (2019) 3448-3456.
DOI URL |
| [23] |
S.Y. Yang, J. Seidel, S.J. Byrnes, P. Shafer, C-H. Yang, M.D. Rossell, P. Yu, Y-H. Chu, J.F. Scott, JWIII. Ager, L.W. Martin, R. Ramesh, Nat. Nanotechnol 5 (2010) 143-147.
DOI PMID |
| [24] |
L. You, F. Zheng, L. Fang, Y. Zhou, L.Z. Tan, Z.Y. Zhang, G.H. Ma, D. Schmidt, A. Rusydi, L. Wang, L. Chang, A.M. Rappe, J.L. Wang, Sci. Adv. 4 (2018) 3438.
DOI PMID |
| [25] |
H. Matsuo, Y. Noguchi, Miyayama M, Kiguchi T, T.J. Konno, Appl. Phys. Lett. 116 (2020) 132901.
DOI URL |
| [26] |
F. Li, S.J. Zhang, D. Damjanovic, L.Q. Chen, T.R. Shrout, Adv. Funct. Mater. 28 (2018) 1801504.
DOI URL |
| [27] |
S.J. Zhang, F. Li, X.N. Jiang, J. Kim, J. Luo, X.C. Geng, Prog. Mater. Sci. 68 (2015) 1-66.
DOI URL |
| [28] |
E.W. Sun, W.W. Cao, Prog. Mater. Sci. 65 (2014) 124-210.
DOI URL |
| [29] |
N. Setter, Ferroelectrics 500 (2016) 164-182.
DOI URL |
| [30] |
W. Kleemann, Phys. Status Solidi B 251 (2014) 1993-2002.
DOI URL |
| [31] |
Y. Imry, S.K. Ma, Phys. Rev. Lett. 35 (1975) 1399-1401.
DOI URL |
| [32] |
D. Phelan, C. Stock, J.A. Rodriguez-Riveraa, S.X. Chi, J. Leão, X.F. Long, Y.J. Xie, A.A. Bokov, Z.G. Ye, P. Ganesh, P.M. Gehring, Proc. Natl. Acad. Sci. U. S. A. 111 (2014) 1754-1759.
DOI URL |
| [33] |
I.K. Jeong, T.W. Darling, J.K. Lee, Th. Proffen, R.H. Heffner, Phys. Rev. Lett. 94 (2005) 147602.
PMID |
| [34] |
H. Takenaka, I. Grinberg, A.M. Rappe, Phys. Rev. Lett. 110 (2013) 147602.
DOI URL |
| [35] |
G. Liu, L.P. Kong, Q.Y. Hu, S.J. Zhang, Appl. Phys. Rev. 7 (2020) 021405.
DOI URL |
| [36] |
D.W. Wang, M.S. Cao, S.J. Zhang, J. Eur. Ceram. Soc. 32 (2012) 433-439.
DOI URL |
| [37] |
D.B. Lin, H.H. Chen, Z.R. Li, Z. Xu, J. Adv. Dielect. 5 (2015) 1550014.
DOI URL |
| [38] |
X.D. Qi, Y. Zhao, E.W. Sun, J. Du, K. Li, Y. Sun, B. Yang, R. Zhang, W.W. Cao, J. Eur. Ceram. Soc. 39 (2019) 4060-4069.
DOI URL |
| [39] |
X.D. Qi, E.W. Sun, J.J. Wang, R. Zhang, B. Yang, W.W. Cao, Ceram. Int. 42 (2016) 15332-15337.
DOI URL |
| [40] |
K. Li, E.W. Sun, X.D. Qi, B. Yang, J. Liu, W.W. Cao, J. Am. Ceram. Soc. 103 (2019) 1744-1754.
DOI URL |
| [41] |
S.L. Swartz, T.R. Shrout, Mater. Res. Bull. 17 (1982) 1245-1250.
DOI URL |
| [42] |
P.S. Brody, F. Crowne, J. Electron. Mater. 4 (1975) 955.
DOI URL |
| [43] |
P.S. Brody, J. Solid State Chem. 12 (1975) 193.
DOI URL |
| [44] |
A. Gruverman, M. Alexe, D. Meier, Nat. Commun. 10 (2019) 1661.
DOI PMID |
| [45] |
H. Uršič, U. Prah, Proc. R. Soc. A 475 (2019) 20180782.
DOI URL |
| [46] |
D. Denning, J. Guyonnet, B.J. Rodriguez, Int. Mater. Rev. 61 (2016) 46-70.
DOI URL |
| [47] |
R. Ahluwalia, T. Lookman, A. Saxena, W.W. Cao, Phys. Rev. B 72 (2005) 014112.
DOI URL |
| [48] |
Y.F. Chang, J. Wu, Y. Sun, S.T. Zhang, X.H. Wang, B. Yang, G.L. Messing, W.W. Cao, Appl. Phys. Lett. 107 (2015) 082902.
DOI URL |
| [49] |
G. Arlt, J. Mater. Sci. 25 (1990) 2655-2666.
DOI URL |
| [50] |
V.V. Shvartsman, A.L. Kholkin, J. Appl. Phys. 101 (2007) 064108.
DOI URL |
| [51] |
D. Viehland, S.J. Jang, L.E. Cross, M. Wuttig, J. Appl. Phys. 68 (1990) 2916.
DOI URL |
| [52] |
A.A. Bokov, Z.G. Ye, Solid State Commun 116 (2000) 105.
DOI URL |
| [53] |
A.A. Bokov, Z.G. Ye, J. Mater. Sci. 41 (2006) 31-52.
DOI URL |
| [54] |
F.M. Wu, B. Yang, E.W. Sun, W.L. Yang, W.W. Cao, Opt. Mater. 36 (2013) 342-345.
DOI URL |
| [55] |
I. Grinberg, D.V. West, M. Torres, G. Gou, D.M. Stein, L. Wu, G. Chen, E.M. Gallo, A.R. Akbashev, P.K. Davies, Nature 503 (2013) 509-512.
DOI URL |
| [56] |
C.J. Hawley, L. Wu, G. Xiao, I. Grinberg, A.M. Rappe, P.K. Davies, J.E. Spanier, Phys. Rev. B: Condens. Matter. Mater. Phys. 96 (2017) 054117.
DOI URL |
| [57] |
L. Wu, A.R. Akbashev, A.A. Podpirka, J.E. Spanier, P.K. Davies, J. Am. Ceram. Soc. 102 (2019) 4188-4199.
DOI URL |
| [58] |
G. Zhang, F. Liu, T. Gu, Y. Zhao, N. Li, W. Yang, S. Feng, Adv. Electron. Mater. 3 (2017) 1600498.
DOI URL |
| [59] |
J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Science 299 (2003) 1719-1722.
PMID |
| [60] |
H. Liu, J. Chen, Y. Ren, L. Zhang, Z. Pan, L. Fan, X. Xing, Adv. Electron. Mater. 1 (2015) 1400051.
DOI URL |
| [61] |
W.T.H. Koch, R. Munser, W. Ruppel, P. Würfel, Solid State Commun 17 (1975) 847.
DOI URL |
| [62] |
J.J. Zhang, X.D. Su, M.G. Shen, Z.H. Dai, L.J. Zhang, X.Y. He, W.X. Cheng, M.Y. Cao, G.F. Zou, Sci. Rep. 3 (2013) 2109.
DOI URL |
| [1] | Dao Wang, Yan Zhang, Jiali Wang, Chunlai Luo, Ming Li, Wentao Shuai, Ruiqiang Tao, Zhen Fan, Deyang Chen, Min Zeng, Jiyan Y. Dai, Xubing B. Lu, J.-M. Liu. Enhanced ferroelectric polarization with less wake-up effect and improved endurance of Hf0.5Zr0.5O2 thin films by implementing W electrode [J]. J. Mater. Sci. Technol., 2022, 104(0): 1-7. |
| [2] | Tingting Xu, Ping Niu, Shulan Wang, Li Li. High visible light photocatalytic activities obtained by integrating g-C3N4 with ferroelectric PbTiO3 [J]. J. Mater. Sci. Technol., 2021, 74(0): 128-135. |
| [3] | Baijie Song, Shuanghao Wu, Hao Yan, Kun Zhu, Liuxue Xu, Bo Shen, Jiwei Zhai. Fatigue-less relaxor ferroelectric thin films with high energy storage density via defect engineer [J]. J. Mater. Sci. Technol., 2021, 77(0): 178-186. |
| [4] | Changsong Chen, Jiang Chen, Zhen Wang, Jian Zhang, Haisheng San, Shichao Liu, Chunyu Wu, Werner Hofmann. Free-standing ZnO nanorod arrays modified with single-walled carbon nanotubes for betavoltaics and photovoltaics [J]. J. Mater. Sci. Technol., 2020, 54(0): 48-57. |
| [5] | Chao Wang, Qiang Li, Weiming Zhang, Huiqing Fan. Large electric field-induced strain in the novel BNKTAN-BNBLTZ lead-free ceramics [J]. J. Mater. Sci. Technol., 2020, 45(0): 15-22. |
| [6] | Johwa Yang, Hyunjin Jo, Soo-Won Choi, Dong-Won Kang, Jung-Dae Kwon. Adoption of wide-bandgap microcrystalline silicon oxide and dual buffers for semitransparent solar cells in building-integrated photovoltaic window system [J]. J. Mater. Sci. Technol., 2019, 35(8): 1563-1569. |
| [7] | Xiaohan Li, Biaohong Huang, Weijin Hu, Zhidong Zhang. Electrical and optical modulation on ferroelectric properties of P(VDF-TrFE) thin film capacitors [J]. J. Mater. Sci. Technol., 2019, 35(10): 2194-2199. |
| [8] | Pingbo Chen, Tao Liu, Fengyu Kong, Anding Wang, Chunyan Yu, Gang Wang, Chuntao Chang, Xinmin Wang. Ferromagnetic element microalloying and clustering effects in high Bs Fe-based amorphous alloys [J]. J. Mater. Sci. Technol., 2018, 34(5): 793-798. |
| [9] | Yan Wei, Yu Song, Xuliang Deng, Bing Han, Xuehui Zhang, Yang Shen, Yuanhua Lin. Dielectric and Ferroelectric Properties of BaTiO3 Nanofibers Prepared via Electrospinning [J]. J. Mater. Sci. Technol., 2014, 30(8): 743-747. |
| [10] | Guohua Dong, Guoqiang Tan, Wenlong Liu, Ao Xia, Huijun Ren. Effect of Tb Doping on Structural and Electrical Properties of BiFeO3 Thin Films Prepared by Sol–Gel Technique [J]. J. Mater. Sci. Technol., 2014, 30(4): 365-370. |
| [11] | Wenjing Qin, Guojing Ding, Xinrui Xu, Liying Yang, Shougen Yin. Annealing Effect of ZnO on the Performance of Inverted Organic Photovoltaic Devices [J]. J. Mater. Sci. Technol., 2014, 30(2): 197-202. |
| [12] | Xiujian Chou, Zhenyu Zhao, Miaoxuan Du, Jun Liu, Jiwei Zhai. Microstructures and Dielectric Properties of Ba1-xSrxTiO3 Ceramics Doped with B2O3-Li2O Glasses for LTCC Technology Applications [J]. J Mater Sci Technol, 2012, 28(3): 280-284. |
| [13] | Neeraj, Pankaj Kumar, K.K. Raina. Analysis of Dielectric and Electro-optic Responses of Nanomaterials Doped Ferroelectric Liquid Crystal Mixture [J]. J Mater Sci Technol, 2011, 27(12): 1094-1098. |
| [14] | Chengju Fu Zhixiong Huang Jie Li Dongyun Guo. Microstructure and Ferroelectric Properties of (Bi0:9 Ho0:1)3:999Ti2:997V0:003O12 Thin Films Prepared by Sol-gel Method for Nonvolatile Memory [J]. J Mater Sci Technol, 2010, 26(8): 679-681. |
| [15] | Huizhong Xu Liang Zhen Changhong Yang Zhuo Wang. Effect of Bi2Ti2O7 Seeding Layer on Capacitance-voltage Properties of Bi3:54Nd0:46Ti3O12 Films [J]. J Mater Sci Technol, 2010, 26(3): 206-210. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
