J. Mater. Sci. Technol. ›› 2022, Vol. 104: 127-130.DOI: 10.1016/j.jmst.2021.06.061
• Research Article • Previous Articles Next Articles
Chi Liua, Xu-Qi Yanga,b, Wei Maa,b, Xin-Zhe Wanga,b, Hai-Yan Jianga,b, Wen-Cai Rena,b, Dong-Ming Suna,b,*()
Received:
2021-05-20
Revised:
2021-06-28
Accepted:
2021-06-29
Published:
2022-03-30
Online:
2022-03-30
Contact:
Dong-Ming Sun
About author:
* Chinese Academy of Sciences, Institute of Metal Re-search, Shenyang 110016, China. E-mail address: dmsun@imr.ac.cn (D.-M. Sun).1 These authors contributed equally to this work: Chi Liu, Xu-Qi Yang.
Chi Liu, Xu-Qi Yang, Wei Ma, Xin-Zhe Wang, Hai-Yan Jiang, Wen-Cai Ren, Dong-Ming Sun. A silicon-graphene-silicon transistor with an improved current gain[J]. J. Mater. Sci. Technol., 2022, 104: 127-130.
Fig. 1. Fabrication and operation principle of a Si-Au-Si transistor. (a) Illustration of the fabrication of a Si-Au-Si transistor by vertically stacking a Si substrate, a Au base film and a Si membrane. (b) Optical image (scale bar: 20 μm) and SEM image (scale bar: 3 μm) of a Si-Au-Si transistor. (c) Illustration of the cross-section. (d) Energy band diagram and current components of the transistor showing the basic operation mechanism of the device.
Fig. 2. Electrical characteristics of Si-Au-Si, Si-Gr-Ge and Si-Gr-Si transistors. For the Si-Au-Si transistor, (a)-(d) shows the emitter and collector junction characteristics, the input Ie-Ve and transfer Ic-Ve characteristics, the net current Ic’ formed by the collected electrons, and the common base current gain α. (e)-(h) and (i)-(l) show the characteristics of its counterparts of Si-Gr-Ge and Si-Gr-Si transistors.
Fig. 3. Energy band diagrams for (a) Si-Au-Si, (b) Si-Gr-Ge and (c) Si-Gr-Si transistors. Black and red lines are for before and after increasing the bias Vc. When Vc increases, the quantum capacitance effect of graphene will lead to a reduced hot electron energy and a reduced collector barrier height in a Si-Gr-Si transistor.
[1] |
M.M. Atalla, R.W. Soshea, Solid-State Electron 6 (1963) 245-250.
DOI URL |
[2] |
J.L. Moll, IEEE Trans. Electron Dev. 10 (1963) 299-304.
DOI URL |
[3] | J.M. Early, Proc. IRE. 6 (1958) 1924-1927. |
[4] | P.R. Drouilhet, IRE Trans. Circuit Theory 2 (1955) 178-183. |
[5] |
C.R. Crowell, S.M. Sze, Phys. Rev. Lett. 15 (1965) 659-661.
DOI URL |
[6] |
S.M. Sze, C.R. Crowell, G.P. Carey, E.E. LaBate, J. Appl. Phys. 37 (1966) 2690-2695.
DOI URL |
[7] |
C.R. Crowell, S.M. Sze, Solid-State Electron 8 (1965) 979-990.
DOI URL |
[8] |
S.M. Sze, H.K. Gummel, Solid-State Electron 9 (1966) 751-769.
DOI URL |
[9] |
Y. Dai, H. Hu, M. Wang, J. Xu, S. Wang, Nat. Electron. 4 (2021) 17-29.
DOI URL |
[10] |
C. Gong, X. Zhang, Science 363 (2019) eaav4450.
DOI URL |
[11] |
C. Wang, K. Xia, H. Wang, X. Liang, Z. Yin, Y. Zhang, Adv. Mater. 31 (2018) 1801072.
DOI URL |
[12] |
T. Tan, X. Jiang, C. Wang, B. Yao, H. Zhang, Adv. Sci. 7 (2020) 2000058.
DOI URL |
[13] |
A.K. Geim, K.S. Novoselov, Nat. Mater. 6 (2007) 183-191.
PMID |
[14] |
A.K. Geim, A.H.C. Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81 (2009) 109-162.
DOI URL |
[15] |
A.K. Geim, Science 324 (2009) 1530-1534.
DOI PMID |
[16] |
V.D. Lecce, R. Grassi, A. Gnudi, E. Gnani, S. Reggiani, G. Baccarani, IEEE Trans. Electron Dev. 60 (2013) 4263-4268.
DOI URL |
[17] |
V.D. Lecce, R. Grassi, A. Gnudi, E. Gnani, S. Reggiani, G. Baccarani, Solid-State Electron 114 (2015) 23-29.
DOI URL |
[18] | M. Urteaga, Z. Griffith, M. Seo, J. Hacker, M.J.W. Rodwell, in: Proc. IEEE, 105, 2017, pp. 1051-1067. |
[19] | M. Urteaga, R. Pierson, P. Rowell, V. Jain, E. Lobisser, M.J.W. Rodwell, in: Device Res. Conf., Santa Barbara, CA, USA, 2011, pp. 281-282. |
[20] |
M. Schroter, G. Wedel, B. Heinemann, C. Jungemann, J. Krause, P. Chevalier, A. Chantre, IEEE Trans. Electron. Dev. 58 (2011) 3687-3696.
DOI URL |
[21] |
M. Schroter, J. Krause, N. Rinaldi, G. Wedel, B. Heinemann, P. Chevalier, A. Chantre, IEEE Trans. Electron. Dev. 58 (2011) 3697-3706.
DOI URL |
[22] |
W. Mehr, J. Dabrowski, J.C. Scheytt, G. Lippert, Y.H. Xie, M.C. Lemme, M. Ostling, G. Lupina, IEEE Electron. Dev. Lett. 33 (2012) 691-693.
DOI URL |
[23] |
G. Iannaccone, F. Bonaccorso, L. Colombo, G. Fiori, Nat. Nanotech. 13 (2018) 183-191.
DOI URL |
[24] |
F. Giannazzo, G. Greco, F. Roccaforte, S.S. Sonde, Crystals 8 (2018) 70-1-25.
DOI URL |
[25] |
S. Vaziri, A.D. Smith, M. Östling, G. Lupina, J. Dabrowski, G. Lippert, W. Mehr, F. Driussi, S. Venica, V. Di Lecce, A. Gnudi, M. König, G. Ruhl, M. Belete, M. Lemme, Solid State Commun 224 (2015) 64-75.
DOI URL |
[26] |
S. Vaziri, G. Lupina, C. Henkel, A.D. Smith, M. Östling, J. Dabrowski, G. Lippert, W. Mehr, M.C. Lemme, Nano Lett 13 (2013) 1435-1439.
DOI URL |
[27] |
S. Vaziri, M. Belete, E.D. Litta, A.D. Smith, G. Lupina, M.C. Lemme, M. Östling, Nanoscale 7 (2015) 13096-13104.
DOI PMID |
[28] |
C.F. Zeng, E.B. Song, M. Wang, S. Lee, C.M. Torres, J. Tang, B.H. Weiller, K.L. Wang, Nano Lett 13 (2013) 2370.
DOI URL |
[29] |
A. Zubair, A. Nourbakhsh, J.Y. Hong, M. Qi, Y. Song, D. Jena, J. Kong, M.S. Dres-selhaus, T. Palacios, Nano Lett 17 (2017) 3089-3096.
DOI PMID |
[30] |
H. Guo, L. Li, W. Liu, Y. Sun, L. Xu, A. Ali, Y. Liu, C. Wu, K. Shehzad, W.Y. Yin, Y. Xu, IEEE Electron Dev. Lett. 39 (2018) 634-637.
DOI URL |
[31] |
M. Belete, O. Engström, S. Vaziri, G. Lippert, M. Lukosius, S. Kataria, M.C. Lemme, ACS Appl. Mater. Interfaces 12 (2020) 9656-9663.
DOI URL |
[32] |
F. Giannazzo, G. Greco, E. Schilirò, R.L. Nigro, I. Deretzis, A.L. Magna, F. Roc-caforte, F. Iucolano, S. Ravesi, E. Frayssinet, A. Michon, Y. Cordier, ACS Appl. Electron. Mater. 1 (2020) 2342-2354.
DOI URL |
[33] |
C. Liu, W. Ma, M. Chen, W. Ren, D. Sun, Nat. Commun. 10 (2019) 1-7.
DOI URL |
[34] |
H. Ko, K. Takei, R. Kapadia, S. Chuang, H. Fang, P.W. Leu, K. Ganapathi, E. Plis, H.S. Kim, S.Y. Chen, M. Madsen, A.C. Ford, Y.L. Chueh, S. Krishna, S. Salahuddin, A. Javey, Nature 468 (2010) 286-289.
DOI URL |
[35] |
T.C. Liu, S. Kabuyanagi, T. Nishimura, T. Yajima, A. Toriumi, IEEE Electron Dev. Lett. 38 (2017) 716-719.
DOI URL |
[36] |
L. Gao, W. Ren, H. Xu, L. Jin, Z. Wang, T. Ma, L.P. Ma, Z. Zhang, Q. Fu, L.M. Peng, X. Bao, H.M. Cheng, Nat. Commun. 3 (2012) 699-1-7.
DOI URL |
[37] |
X. Wang, A. Dolocan, H. Chou, L. Tao, A. Dick, D. Akinwande, C.G. Willson, Chem. Mater. 29 (2017) 2033-2039.
DOI URL |
[38] | H.-S.P. Wong, D. Akinwande, Carbon Nanotube and Graphene Device Physics, Cambridge University Press, New York, 2011. |
[39] | S.M. Sze, K.K. Ng, Physics of Semiconductor Devices, 3rd ed., John Wiley & Sons, Inc., New Jersey, 2007. |
[40] |
T. Nishimura, K. Kita, A. Toriumi, App. Phys. Lett. 91 (2007) 123123-1-3.
DOI URL |
[41] |
M. Zhao, Z. Xue, W. Zhu, G. Wang, S. Tang, Z. Liu, Q. Guo, D. Chen, P.K. Chu, G. Ding, Z. Di, ACS Appl. Mater. Interfaces 12 (2020) 15606-15614.
DOI URL |
[42] |
W. Kong, H. Li, K. Qiao, Y. Kim, K. Lee, Y. Nie, D. Lee, T. Osadchy, R.J. Mol-nar, D.K. Gaskill, R.L. Myers-Ward, K.M. Daniels, Y. Zhang, S. Sundram, Y. Yu, S.H. Bae, S. Rajan, Y. Shao-Horn, K. Cho, A. Ougazzaden, J.C. Grossman, J. Kim, Nat. Mater. 17 (2017) 999-1004.
DOI URL |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||