J. Mater. Sci. Technol. ›› 2022, Vol. 101: 294-307.DOI: 10.1016/j.jmst.2021.04.061
• Research Article • Previous Articles Next Articles
Hong Honga,c, Lihong Jianga, Huating Tua, Jiyong Hua,b,*(), Kyoung-Sik Moonc, Xiong Yana, Ching-ping Wongc
Received:
2021-01-10
Revised:
2021-02-18
Accepted:
2021-03-12
Published:
2022-02-28
Online:
2021-07-07
Contact:
Jiyong Hu
About author:
* Key Laboratory of Textile Science &Technology, Min-istry of Education, Donghua University, Shanghai 201620, China. E-mail address: hujy@dhu.edu.cn (J. Hu).Hong Hong, Lihong Jiang, Huating Tu, Jiyong Hu, Kyoung-Sik Moon, Xiong Yan, Ching-ping Wong. Rational design and evaluation of UV curable nano-silver ink applied in highly conductive textile-based electrodes and flexible silver-zinc batteries[J]. J. Mater. Sci. Technol., 2022, 101: 294-307.
Fig. 2. (a) Optical microscopy image of conductive pattern printed on fabric with UV curable conductive ink (Defoamer-free). (b) Optical microscopy image of conductive pattern printed using UV curable conductive ink prepared with additives.
Ingredients (wt%) | Ink-IBTP | Ink-IBPE | Ink-TPPE | Ink-TMTP | Ink-TMPE |
---|---|---|---|---|---|
PUA | 60 | 60 | 60 | 60 | 60 |
IBOMA + TPGDA | 27 | 0 | 0 | 0 | 0 |
IBOMA + PEG200DA | 0 | 27 | 0 | 0 | 0 |
TPGDA + PEG200DA | 0 | 0 | 27 | 0 | 0 |
TMPTA + TPGDA | 0 | 0 | 0 | 27 | 0 |
TMPTA + PEG200DA | 0 | 0 | 0 | 0 | 27 |
1173 | 10 | 10 | 10 | 10 | 10 |
KH-560 | 2.2 | 2.2 | 2.2 | 2.2 | 2.2 |
BYK-A555 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
BYK-333 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 |
Table 1 Formulation of UV curable inks with different monomers.
Ingredients (wt%) | Ink-IBTP | Ink-IBPE | Ink-TPPE | Ink-TMTP | Ink-TMPE |
---|---|---|---|---|---|
PUA | 60 | 60 | 60 | 60 | 60 |
IBOMA + TPGDA | 27 | 0 | 0 | 0 | 0 |
IBOMA + PEG200DA | 0 | 27 | 0 | 0 | 0 |
TPGDA + PEG200DA | 0 | 0 | 27 | 0 | 0 |
TMPTA + TPGDA | 0 | 0 | 0 | 27 | 0 |
TMPTA + PEG200DA | 0 | 0 | 0 | 0 | 27 |
1173 | 10 | 10 | 10 | 10 | 10 |
KH-560 | 2.2 | 2.2 | 2.2 | 2.2 | 2.2 |
BYK-A555 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
BYK-333 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 |
Ingredients (wt%) | Ink-HR93 | Ink- HR96 | Ink- R93R96 | Ink- ER93 | Ink- ER96 |
---|---|---|---|---|---|
HPU + PUA (R93) | 60 | 0 | 0 | 0 | 0 |
HPU + PUA (R96) | 0 | 60 | 0 | 0 | 0 |
PUA (R93) + PUA (R96) | 0 | 0 | 60 | 0 | 0 |
EA + PUA (R93) | 0 | 0 | 0 | 60 | 0 |
EA + PUA (R96) | 0 | 0 | 0 | 0 | 60 |
TPGDA | 13.5 | 13.5 | 13.5 | 13.5 | 13.5 |
TMPTA | 13.5 | 13.5 | 13.5 | 13.5 | 13.5 |
1173 | 10 | 10 | 10 | 10 | 10 |
KH-560 | 2.2 | 2.2 | 2.2 | 2.2 | 2.2 |
BYK-A555 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
BYK-333 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 |
Table 2 Formulation of UV curable inks with different prepolymers.
Ingredients (wt%) | Ink-HR93 | Ink- HR96 | Ink- R93R96 | Ink- ER93 | Ink- ER96 |
---|---|---|---|---|---|
HPU + PUA (R93) | 60 | 0 | 0 | 0 | 0 |
HPU + PUA (R96) | 0 | 60 | 0 | 0 | 0 |
PUA (R93) + PUA (R96) | 0 | 0 | 60 | 0 | 0 |
EA + PUA (R93) | 0 | 0 | 0 | 60 | 0 |
EA + PUA (R96) | 0 | 0 | 0 | 0 | 60 |
TPGDA | 13.5 | 13.5 | 13.5 | 13.5 | 13.5 |
TMPTA | 13.5 | 13.5 | 13.5 | 13.5 | 13.5 |
1173 | 10 | 10 | 10 | 10 | 10 |
KH-560 | 2.2 | 2.2 | 2.2 | 2.2 | 2.2 |
BYK-A555 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
BYK-333 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 |
Ingredients (wt%) | Ink-184 | Ink-907 | Ink-1173 | Ink-ITX | Ink-TPO |
---|---|---|---|---|---|
PUA | 60 | 60 | 60 | 60 | 60 |
TPGDA | 13.5 | 13.5 | 13.5 | 13.5 | 13.5 |
TMPTA | 13.5 | 13.5 | 13.5 | 13.5 | 13.5 |
184 | 10 | 0 | 0 | 0 | 0 |
907 | 0 | 10 | 0 | 0 | 0 |
1173 | 0 | 0 | 10 | 0 | 0 |
ITX | 0 | 0 | 0 | 10 | 0 |
TPO | 0 | 0 | 0 | 0 | 10 |
KH-560 | 2.2 | 2.2 | 2.2 | 2.2 | 2.2 |
BYK-A555 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
BYK-333 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 |
Table 3 Formulation of UV curable inks with different photoinitiators.
Ingredients (wt%) | Ink-184 | Ink-907 | Ink-1173 | Ink-ITX | Ink-TPO |
---|---|---|---|---|---|
PUA | 60 | 60 | 60 | 60 | 60 |
TPGDA | 13.5 | 13.5 | 13.5 | 13.5 | 13.5 |
TMPTA | 13.5 | 13.5 | 13.5 | 13.5 | 13.5 |
184 | 10 | 0 | 0 | 0 | 0 |
907 | 0 | 10 | 0 | 0 | 0 |
1173 | 0 | 0 | 10 | 0 | 0 |
ITX | 0 | 0 | 0 | 10 | 0 |
TPO | 0 | 0 | 0 | 0 | 10 |
KH-560 | 2.2 | 2.2 | 2.2 | 2.2 | 2.2 |
BYK-A555 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
BYK-333 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 |
Ingredients (wt%) | CI-30 wt% | CI-40 wt% | CI-50 wt% | CI-60 wt% | CI-70 wt% | CI-80 wt% |
---|---|---|---|---|---|---|
PUA | 42 | 36 | 30 | 24 | 18 | 12 |
TPGDA | 9.45 | 8.1 | 6.75 | 5.4 | 4.05 | 2.7 |
TMPTA | 9.45 | 8.1 | 6.75 | 5.4 | 4.05 | 2.7 |
1173 | 7 | 6 | 5 | 4 | 3 | 2 |
KH-560 | 1.54 | 1.32 | 1.1 | 0.88 | 0.66 | 0.44 |
BYK-555 | 0.35 | 0.3 | 0.25 | 0.2 | 0.15 | 0.1 |
BYK-333 | 0.21 | 0.18 | 0.15 | 0.12 | 0.09 | 0.06 |
Nano-silver | 30 | 40 | 50 | 60 | 70 | 80 |
Table 4 Formulation of UV curable conductive inks with different silver content.
Ingredients (wt%) | CI-30 wt% | CI-40 wt% | CI-50 wt% | CI-60 wt% | CI-70 wt% | CI-80 wt% |
---|---|---|---|---|---|---|
PUA | 42 | 36 | 30 | 24 | 18 | 12 |
TPGDA | 9.45 | 8.1 | 6.75 | 5.4 | 4.05 | 2.7 |
TMPTA | 9.45 | 8.1 | 6.75 | 5.4 | 4.05 | 2.7 |
1173 | 7 | 6 | 5 | 4 | 3 | 2 |
KH-560 | 1.54 | 1.32 | 1.1 | 0.88 | 0.66 | 0.44 |
BYK-555 | 0.35 | 0.3 | 0.25 | 0.2 | 0.15 | 0.1 |
BYK-333 | 0.21 | 0.18 | 0.15 | 0.12 | 0.09 | 0.06 |
Nano-silver | 30 | 40 | 50 | 60 | 70 | 80 |
Grade | Evaluation criteria |
---|---|
5B | The edges of the cuts are completely smooth, none of the squares of the lattice is detached. |
4B | Small flakes of the coating are detached at intersections, less than 5% of the area is affected. |
3B | Small flakes of the coating are detached along edges and at intersections of cuts. The area affected is 5 to 15% of the lattice. |
2B | The coating has flaked along the edges and on parts of the squares. The area affected is 15 to 35% of the lattice. |
1B | The coating has flaked along the edges of cuts in large ribbons and whole squares have detached. The area affected is 35 to 65% of the lattice. |
0B | Flaking and detachment worse than Grade 1B. |
Table 5 Adhesion rating scale.
Grade | Evaluation criteria |
---|---|
5B | The edges of the cuts are completely smooth, none of the squares of the lattice is detached. |
4B | Small flakes of the coating are detached at intersections, less than 5% of the area is affected. |
3B | Small flakes of the coating are detached along edges and at intersections of cuts. The area affected is 5 to 15% of the lattice. |
2B | The coating has flaked along the edges and on parts of the squares. The area affected is 15 to 35% of the lattice. |
1B | The coating has flaked along the edges of cuts in large ribbons and whole squares have detached. The area affected is 35 to 65% of the lattice. |
0B | Flaking and detachment worse than Grade 1B. |
Fig. 3. (a) Influence of different monomers on curing speed. (b) Influence of different monomers on the adhesion between UV-curing ink and fabric substrate.
Fig. 4. (a) Influence of different prepolymers on curing speed. b) Influence of different prepolymers on the adhesion between UV-curing ink and fabric substrate.
Fig. 5. (a) Influence of different photoinitiators on curing speed. (b) FT-IR spectra of UV curable ink with 1173 before and after UV curing. (c) FT-IR spectra of UV curable inks with different photoinitiators after UV curing. (d) The effect of different photoinitiators on the conversion of double bond.
Fig. 6. (a-d, g and h) SEM images of textile-based electrodes printed with different UV curable nano-silver inks. (a) CI-30 wt%, (b) CI-40 wt%, (c) CI-50 wt%, (d) CI-60 wt%, (g) CI-70 wt%, and (h) CI-80 wt%, (e) SEM image of the edge of electrode printed with CI-60 wt%, (f) Local SEM image electrode printed with CI-60 wt%.
Fig. 7. (a) Electrical resistance of the textile-based electrodes as a function of silver content. (b) Change of a particle-particle contact resistance due to the more contact between two silver flakes caused by shrinkage of the polymeric matrix. (RAg, RCr and Rt are bulk resistance of silver, constriction resistance and tunneling resistance). (c) Cross-sectional SEM image of the electrode printed with CI-60 wt%. (d) Electrical conductivity of the electrodes printed with different conductive inks.
Fig. 8. (a) Resistance of textile-based electrode printed using CI-60 wt% with variable degrees of bending. (b) Relative electrical resistance of electrode during 3000 bending cycles. (c) SEM image of electrode before bending. (d) SEM image of electrode after 3000 bending cycles.
Fig. 9. (a) Relative electrical resistance of textile-based electrode printed using CI-60 wt% during 20 washing cycles. (b) SEM images of electrodes before washing. c) SEM images of electrodes after 20 washing cycles.
Fig. 10. (a-d) SEM images of the electrodes on different fabrics. (a) carbonate-coated fabric, (b) plain fabric, (c) twill fabric, and (d) knitted fabric.
Fig. 12. (a-d) The corresponding elemental mapping images of Ag, C, and O: (a) carbonate-coated fabric, (b) plain fabric, (c) twill fabric, and (d) knitted fabric.
Fig. 13. (a) Schematic diagram of a two-electrode system for the characterization of flexible nano-silver electrode. (b) CV curve of the nano-silver electrode. (c) GCD curves at 1 mA/cm2 between 1.0 and 1.8 V. (d) Cyclic stability of the flexible electrodes at 1 mA/cm2 for 300 cycles.
[1] | Z. Wang, Y. Si, C. Zhao, D. Yu, W. Wang, G. Sun, ACS Appl. Mater. Interfaces 11 (2019) 27200-27209. |
[2] | T. Carey, S. Cacovich, G. Divitini, J. Ren, A. Mansouri, J.M. Kim, C. Wang, C. Ducati, R. Sordan, F. Torrisi, Nat. Commun. 8 (2017) 1-11. |
[3] | R. Cao, X. Pu, X. Du, W. Yang, J. Wang, H. Guo, S. Zhao, Z. Yuan, C. Zhang, C. Li, Z.L. Wang, ACS Nano 12 (2018) 5190-5196. |
[4] | W. Zeng, L. Shu, Q. Li, S. Chen, F. Wang, X.M. Tao, Adv. Mater. 27 (2014) 5310-5336. |
[5] | K. Yang, K. Meadmore, C. Freeman, N. Grabham, A.M. Hughes, Y. Wei, R. Torah, M. Glanc Gostkiewicz, S. Beeby, J. Tudor, Sensors 18 (2018) 2410. |
[6] | D. Hu, W. Zhu, Y. Peng, S. Shen, Y. Deng, J. Mater. Sci. Technol. 33 (2017) 1113-1119. |
[7] | S. Afroj, S. Tan, A.M. Abdelkader, K.S. Novoselov, N. Karim, Adv. Funct. Mater. 30 (2020) 2000293. |
[8] | H. Fan, K. Li, Q. Li, C. Hou, Q. Zhang, Y. Li, W. Jin, H. Wang, J. Mater. Chem. C 5 (2017) 9778-9785. |
[9] | S. Yao, J. Yang, F.R. Poblete, X. Hu, Y. Zhu, ACS Appl. Mater. Interfaces 11 (2019) 31028-31037. |
[10] | J. Perelaer, M. Klokkenburg, C.E. Hendriks, U.S. Schubert, Adv. Mater. 21 (2009) 4830-4834. |
[11] | H.M. Cronin, Z. Stoeva, M. Brown, M. Shkunov, S.R.P. Silva, ACS Appl. Mater. Interfaces 10 (2018) 21398-21410. |
[12] | M. Hummelgard, R. Zhang, H.E. Nilsson, H. Olin, PLoS One 6 (2011) e17209. |
[13] | X. Zhang, X. Wang, Z. Lei, L. Wang, M. Tian, S. Zhu, H. Xiao, X. Tang, L. Qu, ACS Appl. Mater. Interfaces 12 (2020) 14459-14467. |
[14] | J. Liang, K. Tong, Q. Pei, Adv. Mater. 28 (2016) 5986-5996. |
[15] | S. Merilampi, T.Laine Ma, P. Ruuskanen, Microelectron. Reliab. 49 (2009) 782-790. |
[16] | W.J. Hyun, E.B. Secor, M.C. Hersam, C.D. Frisbie, L.F. Francis, Adv. Mater. 27 (2015) 109-115. |
[17] | M. Kaltenbrunner, T. Sekitani, J. Reeder, T. Yokota, K. Kuribara, T. Tokuhara, M. Drack, R. Schwodiauer, I. Graz, S. Bauer Gogonea, S. Bauer, T. Someya, Na- ture 499 (2013) 458-463. |
[18] | G.A. Salvatore, N. Munzenrieder, T. Kinkeldei, L. Petti, C. Zysset, I. Strebel, L. Buthe, G. Troster, Nat. Commun. 5 (2014) 2982. |
[19] | A. Chiolerio, S. Bocchini, F. Scaravaggi, S. Porro, D. Perrone, D. Beretta, M. Caironi, C.F. Pirri, Semicond. Sci. Technol. 30 (2015) 104001. |
[20] | A.J. Kell, C. Paquet, O. Mozenson, I. Djavani Tabrizi, B. Deore, X. Liu, G.P. Lop- inski, R. James, K. Hettak, J. Shaker, A. Momciu, J. Ferrigno, O. Ferrand, J.X. Hu, S. Lafreniere, P.R.L. Malenfant, ACS Appl. Mater. Interfaces 9 (2017) 17226-17237. |
[21] | C. Kim, M. Nogi, K. Suganuma, Y. Yamato, ACS Appl. Mater. Interfaces 4 (2012) 2168-2173. |
[22] | D. Deganello, J.A. Cherry, D.T. Gethin, T.C. Claypole, Thin Solid Films 518 (2010) 6113-6116. |
[23] | Z. Li, T. Le, Z. Wu, Y. Yao, L. Li, M. Tentzeris, K.S. Moon, C.P. Wong, Adv. Funct. Mater. 25 (2015) 464-470. |
[24] | M.A. Yokus, R. Foote, J.S. Jur, IEEESens. J. 17 (2016)7967-7976. |
[25] | N. Matsuhisa, M. Kaltenbrunner, T. Yokota, H. Jinno, K. Kuribara, T. Sekitani, T. Someya, Nat. Commun. 6 (2015) 7461. |
[26] | R. Faddoul, N. Reverdy Bruas, A. Blayo, Mater. Sci. Eng. B 177 (2012) 1053-1066. |
[27] | Z. Wang, W. Wang, Z. Jiang, D. Yu, Prog. Org. Coat. 101 (2016) 604-611. |
[28] | C. Mendes Felipe, J. Oliveira, I. Etxebarria, J.L. Vilas Vilela, S. Lanceros Mendez, Adv. Mater. Technol. 4 (2019) 1800618. |
[29] | E. Saleh, P. Woolliams, B. Clarke, A. Gregory, S. Greedy, C. Smartt, R. Wildman, I. Ashcroft, R. Hague, P. Dickens, C. Tuck, Addit. Manuf. 13 (2017) 143-148. |
[30] | H. Hong, J. Hu, X. Yan, Text. Res. J. 90 (2020) 1212-1223. |
[31] | H. Jin, N. Matsuhisa, S. Lee, M. Abbas, T. Yokota, T. Someya, Adv. Mater. 29 (2017) 1605848. |
[32] | J. Xu, Y. Jiang, T. Zhang, Y. Dai, D. Yang, F. Qiu, Z. Yu, P. Yang, Prog. Org. Coat. 122 (2018) 10-18. |
[33] | X. Wang, M. Jiang, Z. Zhou, J. Gou, D. Hui, Compos. B. Eng. 110 (2017) 442-458. |
[34] | S. Berchmans, A.J. Bandodkar, W. Jia, J. Ramírez, Y.S. Meng, J. Wang, J. Mater. Chem. A 2 (2014) 15788-15795. |
[35] | C. Yan, X. Wang, M. Cui, J. Wang, W. Kang, C.Y. Foo, P.S. Lee, Adv. Energy Mater. 4 (2014) 1301396. |
[1] | Hong Hong, Jiyong Hu, Kyoung-Sik Moon, Xiong Yan, Ching-ping Wong. Rheological properties and screen printability of UV curable conductive ink for flexible and washable E-textiles [J]. J. Mater. Sci. Technol., 2021, 67(0): 145-155. |
[2] | Wei Wu, Yongshan Wei, Hongjiang Chen, Keyan Wei, Zhitong Li, Jianhui He, Libo Deng, Lei Yao, Haitao Yang. In-situ encapsulation of α-Fe2O3 nanoparticles into ZnFe2O4 micro-sized capsules as high-performance lithium-ion battery anodes [J]. J. Mater. Sci. Technol., 2021, 75(0): 110-117. |
[3] | Guoguo Xi, Lei Zuo, Xuan Li, Yu Jin, Ran Li, Tao Zhang. In-situ constructed Ru-rich porous framework on NiFe-based ribbon for enhanced oxygen evolution reaction in alkaline solution [J]. J. Mater. Sci. Technol., 2021, 70(0): 197-204. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||