J. Mater. Sci. Technol. ›› 2022, Vol. 101: 199-204.DOI: 10.1016/j.jmst.2021.05.054
• Research Article • Previous Articles Next Articles
Longkang Conga, Wei Lia,*(), Jiancheng Wanga, Shengyue Gub, Shouyang zhanga,*(
)
Received:
2021-04-12
Revised:
2021-05-18
Accepted:
2021-05-30
Published:
2022-02-28
Online:
2021-07-30
Contact:
Wei Li,Shouyang zhang
About author:
zhangshouyang@nwpu.edu.cn (S. zhang).Longkang Cong, Wei Li, Jiancheng Wang, Shengyue Gu, Shouyang zhang. High-entropy (Y0.2Gd0.2Dy0.2Er0.2Yb0.2)2Hf2O7 ceramic: A promising thermal barrier coating material[J]. J. Mater. Sci. Technol., 2022, 101: 199-204.
Compounds | Crystal structure | rRE/rHf | Lattice parametersa (Å) | Theoretical density ρ (g/cm3) |
---|---|---|---|---|
(Y0.2Gd0.2Dy0.2Er0.2Yb0.2)2Hf2O7 | fluorite | 1.43 | 5.192 | 9.12 |
Y2Hf2O7 | fluorite | 1.44 | 5.201 | 7.63 |
Gd2Hf2O7 | borderline | 1.48 | 5.258 | 8.95 |
Dy2Hf2O7 | fluorite | 1.45 | 5.218 | 9.28 |
Er2Hf2O7 | fluorite | 1.41 | 5.189 | 9.55 |
Yb2Hf2O7 | fluorite | 1.39 | 5.160 | 9.85 |
Table 1 Ionic radius ratios, lattice parameters, expected crystal structure and theoretical density of (Y0.2Gd0.2Dy0.2Er0.2Yb0.2)2Hf2O7 and RE2Hf2O7.
Compounds | Crystal structure | rRE/rHf | Lattice parametersa (Å) | Theoretical density ρ (g/cm3) |
---|---|---|---|---|
(Y0.2Gd0.2Dy0.2Er0.2Yb0.2)2Hf2O7 | fluorite | 1.43 | 5.192 | 9.12 |
Y2Hf2O7 | fluorite | 1.44 | 5.201 | 7.63 |
Gd2Hf2O7 | borderline | 1.48 | 5.258 | 8.95 |
Dy2Hf2O7 | fluorite | 1.45 | 5.218 | 9.28 |
Er2Hf2O7 | fluorite | 1.41 | 5.189 | 9.55 |
Yb2Hf2O7 | fluorite | 1.39 | 5.160 | 9.85 |
Fig. 5. (a) XRD spectra of (Y0.2Gd0.2Dy0.2Er0.2Yb0.2)2Hf2O7 specimens calcined at 1600 °C for 10 h and 1700 °C for 2 h in air, (b) thermogravimetry (TG) and differential scanning calorimetry (DSC) curves of (Y0.2Gd0.2Dy0.2Er0.2Yb0.2)2Hf2O7 as a function of temperature.
Fig. 6. Thermophysical performances of (Y0.2Gd0.2Dy0.2Er0.2Yb0.2)2Hf2O7 from room temperature to 1400 °C: (a) thermal conductivity and diffusivity curves, (b) linear thermal expansion coefficient curve.
[1] | D.R. Clarke, M. Oechsner, N.P. Padture, MRS Bull. 37 (2012) 891-898. |
[2] | R. Vaßen, M.O. Jarligo, T. Steinke, D.E. Mack, D. Stöver, Surf. Coat. Technol. 205 (2010) 938-942. |
[3] | D.R. Clarke, S.R. Phillpot, Mater. Today 8 (2005) 22-29. |
[4] | N.P. Padture, M. Gell, E.H. Jordan, Science 296 (2002) 280-284. |
[5] | J.L. Braun, C.M. Rost, M. Lim, A. Giri, D.H. Olson, G.N. Kotsonis, G. Stan, D.W. Brenner, J.P. Maria, P.E. Hopkins, Adv. Mater. 30 (2018) e1805004. |
[6] | H. Chen, Z. Zhao, H. Xiang, F.Z. Dai, W. Xu, K. Sun, J. Liu, Y. Zhou, J. Mater. Sci. Technol. 48 (2020) 57-62. |
[7] | Y. Dong, K. Ren, Y. Lu, Q. Wang, J. Liu, Y. Wang, J. Eur. Ceram. Soc. 39 (2019) 2574-2579. |
[8] | A. Sarkar, R. Djenadic, D. Wang, C. Hein, R. Kautenburger, O. Clemens, H. Hahn, J. Eur. Ceram. Soc. 38 (2018) 2318-2327. |
[9] | B. Liu, Y. Liu, C. Zhu, H. Xiang, H. Chen, L. Sun, Y. Gao, Y. Zhou, J. Mater. Sci. Technol. 35 (2019) 833-851. |
[10] | N. Clavier, R. Podor, N. Dacheux, J. Eur. Ceram. Soc. 31 (2011) 941-976. |
[11] | M. Zhao, W. Pan, C.L. Wan, Z.X. Qu, Z. Li, J. Yang, J. Eur. Ceram. Soc. 37 (2017) 1-13. |
[12] | Z. Zhao, H. Chen, H. Xiang, F.-Z. Dai, X. Wang, Z. Peng, Y. Zhou, J. Mater. Sci. Technol. 35 (2019) 2892-2896. |
[13] | C. Oses, C. Toher, S. Curtarolo, Nat. Rev. Mater. 5 (2020) 295-309. |
[14] | R.-Z. Zhang, M.J. Reece, J. Mater. Chem. A 7 (2019) 22148-22162. |
[15] | H. Xiang, Y. Xing, F.-Z. Dai, H. Wang, L. Su, L. Miao, G. Zhang, Y. Wang, X. Qi, L. Yao, H. Wang, B. Zhao, J. Li, Y. Zhou, J. Adv. Ceram. 10 (2021) 385-441. |
[16] | J. Zhu, X. Meng, J. Xu, P. Zhang, Z. Lou, M.J. Reece, F. Gao, J. Eur. Ceram. Soc. 41 (2021) 1052-1057. |
[17] | Z. Zhao, H. Chen, H. Xiang, F.-Z. Dai, X. Wang, W. Xu, K. Sun, Z. Peng, Y. Zhou, J. Mater. Sci. Technol. 47 (2020) 45-51. |
[18] | Z. Zhao, H. Xiang, F.-Z. Dai, Z. Peng, Y. Zhou, J. Mater. Sci. Technol. 35 (2019) 2647-2651. |
[19] | J. Zhu, X. Meng, P. Zhang, Z. Li, J. Xu, M.J. Reece, F. Gao, J. Eur. Ceram. Soc. 41 (2021) 2861-2869. |
[20] | X. Meng, J. Xu, J. Zhu, P. Zhang, A. Rydosz, M.J. Reece, F. Gao, Scr. Mater. 194 (2021) 113714. |
[21] | K.V. Govindan Kutty, S. Rajagopalan, C.K. Mathews, Mater. Res. Bull. 29 (1994) 759-766. |
[22] | S. Gu, S. Zhang, F. Liu, Y. Liang, W. Li, Appl. Surf. Sci. 455 (2018) 849-855. |
[23] | L. Cong, S. Zhang, S. Gu, W. Li, J. Mater. Sci. Technol. 85 (2021) 152-157. |
[24] | J. Leitner, P. Vo ˇnka, D. Sedmidubský, P. Svoboda, Thermochim. Acta 497 (2010) 7-13. |
[25] | I. Barin, G. Platzki, Weinheim, 1995. |
[26] | K.W. Schlichting, N.P. Padture, P.G. Klemens, J. Mater. Sci. 36 (2001) 3003-3010. |
[27] | M.A. Subramanian, G. Aravamudan, G.V.S. Rao, Prog.Solid State Chem. 15 (1983) 55-143. |
[28] | M. Pokhrel, K. Wahid, Y. Mao, J. Phys. Chem. C 120 (2016) 14828-14839. |
[29] | M. Pokhrel, S.K. Gupta, K. Wahid, Y. Mao, Inorg. Chem. 58 (2019) 1241-1251. |
[30] | V.V. Popov, A.P. Menushenkov, A.A. Yaroslavtsev, Y.V. Zubavichus, B.R. Gay- nanov, A.A. Yastrebtsev, D.S. Leshchev, R.V. Chernikov, J. Alloy. Compd. 689 (2016) 669-679. |
[31] | Y. Zhou, H. Xiang, X. Lu, Z. Feng, Z. Li, J. Adv. Ceram. 4 (2015) 83-93. |
[32] | M. Miku ´skiewicz, D. Migas, G. Moskal, Surf. Coat. Technol. 354 (2018) 66-75. |
[33] | F.A. López-Cota, N.M. Cepeda-Sánchez, J.A. Díaz-Guillén, O.J. Dura, M.A. López de la Torre, M. Maczka, M. Ptak, A.F. Fuentes, J. Am. Ceram. Soc. 100 (2017) 1994-2004. |
[34] | K. Ren, Q. Wang, G. Shao, X. Zhao, Y. Wang, Scr. Mater. 178 (2020) 382-386. |
[35] | Z. Zhao, H. Xiang, H. Chen, F.Z. Dai, X. Wang, Z. Peng, Y. Zhou, J. Adv. Ceram. 9 (2020) 595-605. |
[36] | X. Ren, Z. Tian, J. Zhang, J. Wang, Scr. Mater. 168 (2019) 47-50. |
[37] | L.R. Turcer, A. Sengupta, N.P. Padture, Scr. Mater. 191 (2021) 40-45. |
[38] | F. Li, L. Zhou, J.-X. Liu, Y. Liang, G.-J. Zhang, J. Adv. Ceram. 8 (2019) 576-582. |
[39] | C.L. Wan, W. Pan, Q. Xu, Y.X. Qin, J.D. Wang, Z.X. Qu, M.H. Fang, Phys. Rev. B 74 (2006) 144109. |
[40] | A.J. Wright, Q. Wang, S.-T. Ko, K.M. Chung, R. Chen, J. Luo, Scr. Mater. 181 (2020) 76-81. |
[41] | M. Lim, Z. Rak, J.L. Braun, C.M. Rost, G.N. Kotsonis, P.E. Hopkins, J.P. Maria, D.W. Brenner, J. Appl. Phys. 125 (2019) 055105. |
[42] | P. Wu, M. Hu, F. Wu, X. Chong, J. Feng, Ceram. Int. 44 (2018) 21998-22002. |
[43] | V.N. Guskov, A.V. Tyurin, A.V. Guskov, P.G. Gagarin, A.V. Khoroshilov, K.S. Gavrichev, Ceram. Int. 46 (2020) 12822-12827. |
[44] | L. Zhou, F. Li, J.-X. Liu, Q. Hu, W. Bao, Y. Wu, X. Cao, F. Xu, G.-J. Zhang, J. Eur. Ceram. Soc. 40 (2020) 5731-5739. |
[45] | Z. Sun, Y. Zhou, J. Wang, M. Li, J. Am. Ceram. Soc. 91 (2008) 2623-2629. |
[46] | S.Y. Chang, C.E. Li, S.C. Chiang, Y.C. Huang, J. Alloy. Compd. 515 (2012) 4-7. |
[47] | J. Yang, W. Pan, Y. Han, M. Zhao, M. Huang, C. Wan, J. Am. Ceram. Soc. 103 (2019) 2302-2308. |
[1] | D.R. Clarke, M. Oechsner, N.P. Padture, MRS Bull. 37 (2012) 891-898. |
[2] | R. Vaßen, M.O. Jarligo, T. Steinke, D.E. Mack, D. Stöver, Surf. Coat. Technol. 205 (2010) 938-942. |
[3] | D.R. Clarke, S.R. Phillpot, Mater. Today 8 (2005) 22-29. |
[4] | N.P. Padture, M. Gell, E.H. Jordan, Science 296 (2002) 280-284. |
[5] | J.L. Braun, C.M. Rost, M. Lim, A. Giri, D.H. Olson, G.N. Kotsonis, G. Stan, D.W. Brenner, J.P. Maria, P.E. Hopkins, Adv. Mater. 30 (2018) e1805004. |
[1] | Yanchun Zhou, Biao Zhao, Heng Chen, Huimin Xiang, Fu-Zi Dai, Shijiang Wu, Wei Xu. Electromagnetic wave absorbing properties of TMCs (TM=Ti, Zr, Hf, Nb and Ta) and high entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C [J]. J. Mater. Sci. Technol., 2021, 74(0): 105-118. |
[2] | Weiming Zhang, Biao Zhao, Na Ni, Huimin Xiang, Fu-Zhi Dai, Shijiang Wu, Yanchun Zhou. High entropy rare earth hexaborides/tetraborides (HE REB6/HE REB4) composite powders with enhanced electromagnetic wave absorption performance [J]. J. Mater. Sci. Technol., 2021, 87(0): 155-166. |
[3] | Heng Chen, Huimin Xiang, Fu-Zhi Dai, Jiachen Liu, Yanchun Zhou. High entropy (Yb0.25Y0.25Lu0.25Er0.25)2SiO5 with strong anisotropy in thermal expansion [J]. J. Mater. Sci. Technol., 2020, 36(0): 134-139. |
[4] | Heng Chen, Zifan Zhao, Huimin Xiang, Fu-Zhi Dai, Jie Zhang, Shaogang Wang, Jiachen Liu, Yanchun Zhou. Effect of reaction routes on the porosity and permeability of porous high entropy (Y0.2Yb0.2Sm0.2Nd0.2Eu0.2)B6 for transpiration cooling [J]. J. Mater. Sci. Technol., 2020, 38(0): 80-85. |
[5] | Fu-Zhi Dai, Bo Wen, Yinjie Sun, Huimin Xiang, Yanchun Zhou. Theoretical prediction on thermal and mechanical properties of high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C by deep learning potential [J]. J. Mater. Sci. Technol., 2020, 43(0): 168-174. |
[6] | Heng Chen, Zifan Zhao, Huimin Xiang, Fu-Zhi Dai, Wei Xu, Kuang Sun, Jiachen Liu, Yanchun Zhou. High entropy (Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12: A novel high temperature stable thermal barrier material [J]. J. Mater. Sci. Technol., 2020, 48(0): 57-62. |
[7] | Heng Chen, Biao Zhao, Zifan Zhao, Huimin Xiang, Fu-Zhi Dai, Jiachen Liu, Yanchun Zhou. Achieving strong microwave absorption capability and wide absorption bandwidth through a combination of high entropy rare earth silicide carbides/rare earth oxides [J]. J. Mater. Sci. Technol., 2020, 47(0): 216-222. |
[8] | Heng Chen, Huimin Xiang, Fu-Zhi Dai, Jiachen Liu, Yiming Lei, Jie Zhang, Yanchun Zhou. High porosity and low thermal conductivity high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C [J]. J. Mater. Sci. Technol., 2019, 35(8): 1700-1705. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||