J. Mater. Sci. Technol. ›› 2022, Vol. 101: 187-198.DOI: 10.1016/j.jmst.2021.05.064
Previous Articles Next Articles
Wensen Huanga,b, Jihua Chena,b,*(), Hongge Yana,b,*(
), Weijun Xiaa,b, Bin Sua,b
Received:
2020-11-09
Revised:
2020-05-09
Accepted:
2020-05-10
Published:
2022-02-28
Online:
2021-08-06
Contact:
Jihua Chen,Hongge Yan
About author:
yanhg68@163.com (H. Yan).Wensen Huang, Jihua Chen, Hongge Yan, Weijun Xia, Bin Su. High plasticity mechanism of high strain rate rolled Mg-Ga alloy sheets[J]. J. Mater. Sci. Technol., 2022, 101: 187-198.
Fig. 1. Inverse pole figure (IPF) maps (a-d), grain boundary maps (e, f) and grain size distribution histograms (i-l) of as-HSRRed Mg-Ga alloys: (a, e, i) Alloy A, (b, f, j) Alloy B, (c, g, k) Alloy C, (d, h, l) Alloy D.
Fig. 2. TEM images of Alloy B: (a) DRX grain in Alloy B with [$11\bar{2}0$] observation direction, (b) dark-field TEM images using $g=01\bar{1}0$ reflection, (c) enlarged view of DRX grain and (d) enlarged view of DRX grain under dark-field.
Fig. 3. TEM images of Alloy D: (a) DRX grain in Alloy D with [$11\bar{2}0$] observation direction, (b) dislocation and precipitates with [0001] observation direction, (c) STEM image of precipitates with [$11\bar{2}0$] observation direction, (d) STEM image of precipitates with [$10\bar{1}0$] observation direction.
Fig. 6. The grain orientation distribution histograms of as-HSRRed Mg-Ga alloys: (a-d) non-deformation, (e-h) after 8% tensile deformation: (a, e) Alloy A, (b, f) Alloy B, (c, g) Alloy C, (d, h) Alloy D. (i) The comparison of the proportion of twins after 8% tensile deformation and (j) schematic diagram of strain coordination along the c-axis direction of HCP structure.
Fig. 7. EBSD inverse pole figure (IPF) maps of as-HSRRed Mg-Ga alloy after tensile deformation: (a) Alloy A, (b) Alloy B, (c) Alloy C, (d) Alloy D and (e) the Legend.
Fig. 8. The {0002}{$11\bar{2}0$}{$10\bar{1}0$} pole figures of as-HSRRed alloys after (a, b) non-deformation and (c, d) 8% tensile deformation for (a, c) Alloy A and (b, d) Alloy D. (e) Relationship between the change of grain orientation and the basal texture strength variation and (f) schematic diagram of grain rotation during tensile deformation ((a) and (b) come from our previous research work [34]).
Fig. 9. Kernel average misorientation (KAM) maps of Mg-Ga alloys for (a, e) Alloy A, (b, f) Alloy B, (c, g) Alloy C and (d, f) Alloy D under conditions of (a-d) non-deformed and (e, f) after 8% tensile deformation.
Fig. 10. Local misorientation histograms of Mg-Ga alloys for (a, e) Alloy A, (b, f) Alloy B, (c, g) Alloy C and (d, f) Alloy D under different conditions of (a-d) non-deformed and (e, f) after 8% tensile deformation.
Alloys | Dislocation density (m-2) | Variation (%) | |
---|---|---|---|
Non-deformation | 8% deformation | ||
Alloy A | 1.135 × 1014 | 2.4321 × 1014 | 114 |
Alloy B | 0.9988 × 1014 | 2.1417 × 1014 | 114 |
Alloy C | 0.9534 × 1014 | 2.9403 × 1014 | 208 |
Alloy D | 0.9534 × 1014 | 2.2506 × 1014 | 136 |
Table 1 Increment changes of dislocation density.
Alloys | Dislocation density (m-2) | Variation (%) | |
---|---|---|---|
Non-deformation | 8% deformation | ||
Alloy A | 1.135 × 1014 | 2.4321 × 1014 | 114 |
Alloy B | 0.9988 × 1014 | 2.1417 × 1014 | 114 |
Alloy C | 0.9534 × 1014 | 2.9403 × 1014 | 208 |
Alloy D | 0.9534 × 1014 | 2.2506 × 1014 | 136 |
Fig. 11. Schmid factor (SF) distribution maps of Mg-Ga alloys for (a, b) Alloy A, (c, d) Alloy B, (e, f) Alloy C and (g, h) Alloy D under conditions of (a, c, e, g) non-deformed and (b, d, f, h) after 8% tensile deformation.
Alloys | Slip systems | Average Schmid factors | Variation (%) | |
---|---|---|---|---|
Non-deformation | 8% deformation | |||
Alloy A | Basal <a> (0001) [$11\bar{2}0$] | 0.235 | 0.153 | -34.9 |
Prismatic <a> ($10bar{1}0$) [$1\bar{2}\bar{1}0$] | 0.429 | 0.451 | +5.1 | |
Pyramidal <c+a> ($11\bar{2}2$) [$\bar{1}\bar{1}23$] | 0.424 | 0.432 | +1.9 | |
Alloy B | Basal <a> (0001) [$11\bar{2}0$] | 0.239 | 0.155 | -35.1 |
Prismatic <a> ($10bar{1}0$) [$1\bar{2}\bar{1}0$] | 0.427 | 0.444 | +4.0 | |
Pyramidal <c+a> ($11\bar{2}2$) [$\bar{1}\bar{1}23$] | 0.423 | 0.425 | +0.5 | |
Alloy C | Basal <a> (0001) [$11\bar{2}0$] | 0.253 | 0.167 | -34.0 |
Prismatic <a> ($10\bar{1}0$) [$\bar{1}2\bar{1}0$] | 0.419 | 0.448 | +6.9 | |
Pyramidal <c+a> ($11\bar{2}2$) [$\bar{1}\bar{1}23$] | 0.411 | 0.428 | +4.1 | |
Alloy D | Basal <a> (0001) [$11\bar{2}0$] | 0.235 | 0.156 | -33.6 |
Prismatic <a> ($10\bar{1}0$) [$\bar{1}2\bar{1}0$] | 0.426 | 0.447 | +4.9 | |
Pyramidal <c+a> ($11\bar{2}2$) [$\bar{1}\bar{1}23$] | 0.414 | 0.425 | +2.7 |
Table 2 Average Schmid factors calculated from the inverse pole figures of Mg-Ga alloy samples at different tensile stages along RD.
Alloys | Slip systems | Average Schmid factors | Variation (%) | |
---|---|---|---|---|
Non-deformation | 8% deformation | |||
Alloy A | Basal <a> (0001) [$11\bar{2}0$] | 0.235 | 0.153 | -34.9 |
Prismatic <a> ($10bar{1}0$) [$1\bar{2}\bar{1}0$] | 0.429 | 0.451 | +5.1 | |
Pyramidal <c+a> ($11\bar{2}2$) [$\bar{1}\bar{1}23$] | 0.424 | 0.432 | +1.9 | |
Alloy B | Basal <a> (0001) [$11\bar{2}0$] | 0.239 | 0.155 | -35.1 |
Prismatic <a> ($10bar{1}0$) [$1\bar{2}\bar{1}0$] | 0.427 | 0.444 | +4.0 | |
Pyramidal <c+a> ($11\bar{2}2$) [$\bar{1}\bar{1}23$] | 0.423 | 0.425 | +0.5 | |
Alloy C | Basal <a> (0001) [$11\bar{2}0$] | 0.253 | 0.167 | -34.0 |
Prismatic <a> ($10\bar{1}0$) [$\bar{1}2\bar{1}0$] | 0.419 | 0.448 | +6.9 | |
Pyramidal <c+a> ($11\bar{2}2$) [$\bar{1}\bar{1}23$] | 0.411 | 0.428 | +4.1 | |
Alloy D | Basal <a> (0001) [$11\bar{2}0$] | 0.235 | 0.156 | -33.6 |
Prismatic <a> ($10\bar{1}0$) [$\bar{1}2\bar{1}0$] | 0.426 | 0.447 | +4.9 | |
Pyramidal <c+a> ($11\bar{2}2$) [$\bar{1}\bar{1}23$] | 0.414 | 0.425 | +2.7 |
Alloys | Processing methods | UTS (MPa) | YS (MPa) | Elongation (%) | Refs. |
---|---|---|---|---|---|
ZK60 | HSRR | 371 | 287 | 26 | [ |
ZK60 | Rolling + USRP | 359 | 283 | 14.8 | [ |
ZK60 | Rolling with 300°C | 477 | 425 | 4.1 | [ |
ZK60 | 12P ECAP at 300°C | 360 | 200 | 25 | [ |
12P ECAP at 300°C + cold rolling | 400 | 396 | 9 | ||
ZK60 | Asymmetric Reduction Rolling | 264 | 200 | 27 | [ |
Mg-5.0Zn-1.0Mn | HSRR | 359 | 258 | 20.1 | [ |
Mg-5.0Zn-1.0Mn | Extruded | 299.88 | 229.9 | 11.5 | [ |
Mg-4.0Zn-1.0Mn | Extruded | 299 | 239 | 11.6 | [ |
Mg-4.8Zn-1.0Mn | Extruded | 312 | 235 | 13.3 | |
Mg-5.8Zn-1.0Mn | Extruded | 305 | 209 | 11.6 | |
ZM61 | HSRR | 369 | 280 | 15 | [ |
HSRR | 402 | 298 | 15 | ||
ZM61 | TRC + rolled + T6 | 310 | 256 | 16.2 | [ |
Mg-5.0Zn-0.6Ca | HSRR | 307 | 209 | 31 | [ |
Mg-5.0Zn-0.6Sr | 312 | 240 | 22 | ||
Mg-5.3Zn-0.2Ca-0.5Ce | Extruded | 320 | 268 | 14.7 | [ |
Mg-5.5Zn-0.6Zr-0.8Gd | HSRR | 327 | 242 | 22.0 | [ |
AZ31 | HSRR | 317 | 224 | 26 | [ |
Conventional rolling | 262 | 222 | 17 | ||
AZ31 | Extruded | - | 270 | 21 | [ |
AZ31 | Different speed rolling | 300 | 258 | 7.9 | [ |
311 | 277 | 14.6 | |||
AZ31 | Two - stage rolling | 307 | 220 | 15.5 | [ |
AZ31 | Multi-directional forging | 287 | 197 | 26.2 | [ |
Table 3 Comparison of room temperature mechanical properties of high strain rate rolled magnesium alloy sheets with other wrought magnesium alloys.
Alloys | Processing methods | UTS (MPa) | YS (MPa) | Elongation (%) | Refs. |
---|---|---|---|---|---|
ZK60 | HSRR | 371 | 287 | 26 | [ |
ZK60 | Rolling + USRP | 359 | 283 | 14.8 | [ |
ZK60 | Rolling with 300°C | 477 | 425 | 4.1 | [ |
ZK60 | 12P ECAP at 300°C | 360 | 200 | 25 | [ |
12P ECAP at 300°C + cold rolling | 400 | 396 | 9 | ||
ZK60 | Asymmetric Reduction Rolling | 264 | 200 | 27 | [ |
Mg-5.0Zn-1.0Mn | HSRR | 359 | 258 | 20.1 | [ |
Mg-5.0Zn-1.0Mn | Extruded | 299.88 | 229.9 | 11.5 | [ |
Mg-4.0Zn-1.0Mn | Extruded | 299 | 239 | 11.6 | [ |
Mg-4.8Zn-1.0Mn | Extruded | 312 | 235 | 13.3 | |
Mg-5.8Zn-1.0Mn | Extruded | 305 | 209 | 11.6 | |
ZM61 | HSRR | 369 | 280 | 15 | [ |
HSRR | 402 | 298 | 15 | ||
ZM61 | TRC + rolled + T6 | 310 | 256 | 16.2 | [ |
Mg-5.0Zn-0.6Ca | HSRR | 307 | 209 | 31 | [ |
Mg-5.0Zn-0.6Sr | 312 | 240 | 22 | ||
Mg-5.3Zn-0.2Ca-0.5Ce | Extruded | 320 | 268 | 14.7 | [ |
Mg-5.5Zn-0.6Zr-0.8Gd | HSRR | 327 | 242 | 22.0 | [ |
AZ31 | HSRR | 317 | 224 | 26 | [ |
Conventional rolling | 262 | 222 | 17 | ||
AZ31 | Extruded | - | 270 | 21 | [ |
AZ31 | Different speed rolling | 300 | 258 | 7.9 | [ |
311 | 277 | 14.6 | |||
AZ31 | Two - stage rolling | 307 | 220 | 15.5 | [ |
AZ31 | Multi-directional forging | 287 | 197 | 26.2 | [ |
[1] | X.J. Wang, D.K. Xu, R.Z. Wu, X.B. Chen, Q.M. Peng, L. Jin, Y.C. Xin, Z.Q. Zhang, Y. Liu, X.H. Chen, G. Chen, K.K. Deng, H.Y. Wang, J. Mater. Sci. Technol. 34 (2018) 245-247. |
[2] | U.M. Chaudry, K. Hamad, J.G. Kim, J. Alloys Compd. 792 (2019) 652-664. |
[3] | H. Tonda, S. Ando, Metall. Mater. Trans. A 33 (2002) 831-836. |
[4] | I. Shin, E.A. Carter, Int. J. Plast. 60 (2014) 58-70. |
[5] | R.E. Reed-Hill, W.D. Robertson, Acta Metall. 5 (1957) 717-727. |
[6] | J.W. Christian, S. Mahajan, Prog. Mater. Sci. 39 (1995) 1-157. |
[7] | T. Obara, H. Yoshinga, S. Morozumi, Acta Metall. 21 (1973) 845-853. |
[8] | Z. Keshavarz, M.R. Barnett, Scr. Mater. 55 (2006) 915-918. |
[9] | S.R. Agnew, Ö. Duygulu, Int. J. Plast. 21 (2005) 1161-1193. |
[10] | M.R. Barnett, Mater. Sci. Eng. A 464 (2007) 8-16. |
[11] | M.R. Barnett, Mater. Sci. Eng. A 464 (2007) 1-7. |
[12] | Y.C. Xin, M.Y. Wang, Z. Zeng, G.J. Huang, Q. Liu, Scr. Mater. 64 (2011) 986-989. |
[13] | T. Al-Samman, Acta Mater. 57 (2009) 2229-2242. |
[14] | Y.H. Sun, R.C. Wang, J. Ren, C.Q. Peng, Z.Y. Cai, Mater. Sci. Eng. A 755 (2019) 201-210. |
[15] | U.M. Chaudry, Y.S. Kim, K. Hamad, Mater. Lett. 238 (2019) 305-308. |
[16] | U.M. Chaudry, T.H. Kim, S.D. Park, Y.S. Kim, K. Hamad, J.G. Kim, Mater. Sci. Eng. A 739 (2019) 289-294. |
[17] | X.Y. Wang, Y.F. Wang, C. Wang, S. Xu, J. Rong, Z.Z. Yang, J.G. Wang, H.Y. Wang, J. Mater. Sci. Technol. 49 (2020) 117-125. |
[18] | B.C. Suh, J.H. Kim, J.H. Bae, J.H. Hwang, M.S. Shim, N.J. Kim, Acta Mater. 124 (2017) 268-279. |
[19] | S.H. Lu, D. Wu, R.S. Chen, E. Han, J. Mater. Sci. Technol. 59 (2020) 44-60. |
[20] | R.K. Mishra, A. Brahme, R.K. Sabat, L. Jin, K. Inal, Int. J. Plast. 117 (2019) 157-172. |
[21] | R.K. Sabat, A.P. Brahme, R.K. Mishra, K. Inal, S. Suwas, Acta Mater. 161 (2018) 246-257. |
[22] | X. Zeng, P. Minárik, P. Dobro ˇn, D. Letzig, K.U. Kainer, S.B. Yi, Scr. Mater. 166 (2019) 53-57. |
[23] | C. He, B. Jiang, Q.H. Wang, Y.F. Chai, J. Zhao, M. Yuan, G.S. Huang, D.F. Zhang, F.S. Pan, Mater. Sci. Eng. A 799 (2021) 140290. |
[24] | S.Q. Zhu, H.G. Yan, J.H. Chen, Y.Z. Wu, Y.G. Du, X.Z. Liao, Mater. Sci. Eng. A 559 (2013) 765-772. |
[25] | B. Jiang, L. Gao, G.J. Huang, P.D. Ding, J. Wang, Trans. Nonferrous Met. Soc. China 18 (2008) s160-s164. |
[26] | H. Watanabe, T. Mukai, K. Ishikawa, J. Mater. Sci. 39 (2004) 1477-1480. |
[27] | G.W. Zhao, J.F. Fan, H. Zhang, Q. Zhang, J. Yang, H.B. Dong, B.S. Xu, Mater. Sci. Eng. A 731 (2018) 54-60. |
[28] | L. Jin, D.L. Lin, D.L. Mao, X.Q. Zeng, W.J. Ding, Mater. Lett. 59 (2005) 2267-2270. |
[29] | Y. Chino, M. Mabuchi, R. Kishihara, H. Hosokawa, Y. Yamada, C. Wen, K. Shi- mojima, H. Iwasaki, Mater. Trans. 43 (2002) 2554-2560. |
[30] | M. Mohedano, C. Blawert, K.A. Yasakau, R. Arrabal, B.Mingo E.Matykina, N. Scharnagl, M.G. Ferreira, M.L. Zheludkevich, Mater. Charact. 128 (2017) 85-99. |
[31] | J. Kubásek, D. Vojt ˇech, J. Lipov, T. Ruml, Mater. Sci. Eng. C 33 (2013) 2421-2432. |
[32] | J. Kubásek, D. Vojt ˇech, D. Dvorský, Int. J. Mater. Res. 107 (2016) 459-471. |
[33] | W.S. Huang, J.H. Chen, H.G. Yan, W.J. Xia, B. Su, W.J. Zhu, Met. Mater. Int. 26 (2020) 747-759. |
[34] | W.S. Huang, J.H. Chen, H.G. Yan, W.J. Xia, B. Su, H. Yin, X.X. Yan, J. Mater. Sci. 55 (2020) 10242-10257. |
[35] | S.Q. Zhu, H.G. Yan, J.H. Chen, Y.Z. Wu, B. Su, Y.G. Du, X.Z. Liao, Scr. Mater. 67 (2012) 404-407. |
[36] | S.Q. Zhu, H.G. Yan, X.Z. Liao, S.J. Moody, G. Sha, Y.Z. Wu, S.P. Ringer, Acta Mater. 82 (2015) 344-355. |
[37] | C.Y. Zhao, X.H. Chen, F.S. Pan, J.F. Wang, S.Y. Gao, T. Tu, C.Q. Liu, J.H. Yao, A. Atrens, J. Mater. Sci. Technol. 35 (2019) 142-150. |
[38] | U.F. Kocks, H. Mecking, Prog. Mater. Sci. 48 (2003) 171-273. |
[39] | M. Calcagnotto, D. Ponge, E. Demir, D. Raabe, Mater. Sci. Eng. A 527 (2010) 2738-2746. |
[40] | H. Gao, Y. Huang, W.D. Nix, J.W. Hutchinson, J. Mech. Phys. Solids 36 (1999) 1239-1263. |
[41] | L.P. Kubin, A. Mortensen, Scr. Mater. 48 (2003) 119-125. |
[42] | M. Jahedi, B.A. McWilliams, P. Moy, M. Knezevic, Acta Mater 131 (2017) 221-232. |
[43] | X. Liu, J.J. Jonas, L.X. Li, B.W. Zhu, Mater. Sci. Eng. A 583 (2013) 242-253. |
[44] | X.Q. Li, C.L. Cheng, Q.C. Le, L. Bao, P.P. Jin, P. Wang, L. Ren, H. Wang, X. Zhou, C.L. Hu, J. Mater. Sci. Technol. 52 (2020) 152-161. |
[45] | H.B. Liu, G.H. Qi, Y.T. Ma, H. Hao, F. Jia, S.H. Ji, H.Y. Zhang, X.G. Zhang, Mater. Sci. Eng. A 526 (2009) 7-10. |
[46] | M.H. Yoo, J.K. Lee, Philos. Mag. A 63 (1991) 987-1000. |
[47] | Q. Dong, Z. Luo, H. Zhu, L.Y. Wang, T. Ying, Z.H. Jin, D.J. Li, W.J. Ding, X.Q. Zeng, J. Mater. Sci. Technol. 34 (2018) 1773-1780. |
[48] | J. Zhang, Y.C. Dou, G.B. Liu, Z.X. Guo, Comput. Mater. Sci. 79 (2013) 564-569. |
[49] | M.R. Barentt, Metall. Mater. Trans. A 34 (2003) 1799-1806. |
[50] | Y.Y. Xu, Y.L. Liang, G.G. Peng, Mater. Sci. Eng. A 778 (2020) 139117. |
[51] | H.M. Chen, Q.H. Zang, H. Yu, J. Zhang, Y.X. Jin, Mater. Charact. 106 (2015) 437-441. |
[52] | Y.C. Yuan, A.B. Ma, X.F. Gou, J.H. Jiang, F.M. Lu, D. Song, Y.T. Zhu, Mater. Sci. Eng. A 630 (2015) 45-50. |
[53] | L. Wang, Y.Q. Zhao, H.M. Chen, J. Zhang, Y.D. Liu, Y.N. Wang, Acta Metall. Sin. Engl. Lett. 31 (2018) 63-70. |
[54] | C. Chen, J.H. Chen, H.G. Yan, B. Su, M. Song, S.Q. Zhu, Mater. Des. 100 (2016) 58-66. |
[55] | J.W. Yuan, K. Zhang, T. Li, X.G. Li, Y.J. Li, M.L. Ma, P. Luo, G.Q. Luo, Y.H. Hao, Mater. Des. 40 (2012) 257-261. |
[56] | D.F. Zhang, G.L. Shi, X.B. Zhao, F.G. Qi, Trans. Nonferrous Met. Soc. China 21 (2011) 15-25. |
[57] | J.M. Jiang, J. Wu, S. Ni, H.G. Yan, M. Song, Mater. Sci. Eng. A 712 (2018) 478-484. |
[1] | M. Wang, B.B. He, M.X. Huang. Strong and ductile Mg alloys developed by dislocation engineering [J]. J. Mater. Sci. Technol., 2019, 35(3): 394-395. |
[2] | M.X. Huang, B.B. He. Alloy design by dislocation engineering [J]. J. Mater. Sci. Technol., 2018, 34(3): 417-420. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||