J. Mater. Sci. Technol. ›› 2021, Vol. 93: 110-118.DOI: 10.1016/j.jmst.2021.03.046
• Original article • Previous Articles Next Articles
Jian Huanga,b, Peilin Wanga,b, Peng Lia,b, Huayi Yina,b, Dihua Wanga,b,*()
Accepted:
2021-01-30
Published:
2021-12-10
Online:
2021-12-10
Contact:
Dihua Wang
About author:
*E-mail address: wangdh@whu.edu.cn (D. Wang).Jian Huang, Peilin Wang, Peng Li, Huayi Yin, Dihua Wang. Regulating electrolytic Fe0.5CoNiCuZnx high entropy alloy electrodes for oxygen evolution reactions in alkaline solution[J]. J. Mater. Sci. Technol., 2021, 93: 110-118.
Fig. 2. (a) XRD patterns of the sintered oxide mixture and the reduced products after electrolysis at 1123 K and 2 V for 4 h. (b) Current?time curve of electrolysis at 2 V and 1123 K for 4 h. (c) SEM image of the sintered oxide mixture. (d) SEM image of the electrolytic product.
Fig. 4. (a) XRD patterns of the electrolytic products with different Zn contents at 1123 K and 2 V for 4 h. (b) The corresponding current-time plots. (c?f) SEM images of HEA(Zn0), HEA(Zn0.2), HEA(Zn0.5), and HEA(Zn0.8).
Fig. 6. (a) LSV polarization curves of bulk Fe0.5CoNiCuZnx electrodes in 1 M KOH. (b) The corresponding Tafel slopes derived from (a). (c) Chronopotentiometry plots of different electrodes operated at 10 mA/cm2 for 24 h. (d) LSV polarization curves of the HEA(Zn0.8) electrode before and after chronopotentiometry test for 24 h at 10 mA/cm2.
Fig. 7. (a) LSV polarization curves of bulk electrodes Fe, Co, Ni, Cu and Zn in 1 M KOH. (b) Chronopotentiometry plots of bulk electrodes mentioned above operated at 10 mA/cm2 for 24 h.
Fig. 8. XPS spectra of Cu 2p (a and b), Ni 2p (c and d), Fe 2p (e and f), Co 2p (g and h), and Zn 2p (i and j) before and after OER performance of Fe0.5CoNiCuZnx HEAs electrodes, respectively.
[1] | H.F. Zhang, H.L. Yan, H. Yu, Z.W. Ji, Q.M. Hu, N. Jia, J. Mater. Sci. Technol., 48(2020), pp. 146-155. |
[2] | W. Chen, X. Ding, Y. Feng, X. Liu, K. Liu, Z.P. Lu, D. Li, Y. Li, C.T. Liu, X.Q. Chen, J. Mater. Sci. Technol., 34(2018), pp. 355-364. |
[3] | A.G. Wang, X.H. An, J. Gu, X.G. Wang, L.L. Li, W.L. Li, M. Song, Q.Q. Duan, Z.F. Zhang, X.Z. Liao, J. Mater. Sci. Technol., 39(2020), pp. 1-6. |
[4] | P. Chen, S. Li, Y. Zhou, M. Yan, M.M. Attallah, J. Mater. Sci. Technol., 43(2020), pp. 40-43. |
[5] | K.M. Youssef, A.J. Zaddach, C. Niu, D.L. Irving, C.C. Koch, Mater. Res. Lett., 3(2014), pp. 95-99. |
[6] | J. Hou, W. Song, L. Lan, J. Qiao, J. Mater. Sci. Technol., 48(2020), pp. 140-145. |
[7] | C. Zhang, F. Zhang, H. Diao, M.C. Gao, Z. Tang, J.D. Poplawsky, P.K. Liaw, Mater. Des., 109(2016), pp. 425-433. |
[8] | H. Wan, D. Song, X. Shi, Y. Cai, T. Li, C. Chen, J. Mater. Sci. Technol., 60(2021), pp. 197-205. |
[9] | Z. Fu, W. Chen, Z. Chen, H. Wen, E.J. Lavernia, Mater. Sci. Eng. A, 619(2014), pp. 137-145. |
[10] | B. Gludovatz, A. Hohenwarter, K.V.S. Thurston, H. Bei, Z. Wu, E.P. George, R.O. Ritchie, Nat. Commun., 7 (2016), p.10602. |
[11] | S. Mridha, S. Samal, P.Y. Khan, K. Biswas, Govind, Metall. Mater. Trans. A, 44(2013), pp. 4532-4541. |
[12] | J.W. Yeh, JOM, 67(2015), pp. 2254-2261. |
[13] | H. Jiao, M. Wang, J. Tu, S. Jiao, J. Electrochem. Soc., 165(2018), pp. D574-D579. |
[14] | F. Salemi, M.H. Abbasi, F. Karimzadeh, J. Alloys Compd., 685(2016), pp. 278-286. |
[15] | C.S. babu, K. Sivaprasad, V. Muthupandi, J.A. Szpunar, Proc. Mater. Sci., 5(2014), pp. 1020-1026. |
[16] | S. Varalakshmi, G. Appa Rao, M. Kamaraj, B.S. Murty, J. Mater. Sci., 45(2010), pp. 5158-5163. |
[17] | Y.Z. Zhang, Y.D. Chen, Q.D. Qin, W. Li, J. Magn. Magn. Mater., 498(2020), Article 166151 |
[18] | B. Zhang, P.K. Liaw, J. Brechtl, J. Ren, X. Guo, Y. Zhang, J. Alloys Compd., 820(2020), Article 153092. |
[19] | A. Dwivedi, C.C. Koch, K.V. Rajulapati, Mater. Lett., 183(2016), pp. 44-47. |
[20] | S. Varalakshmi, M. Kamaraj, B.S. Murty, Metall. Mater. Trans. A, 41(2010), pp. 2703-2709. |
[21] | M. Murali, S.P.K. Babu, B.J. Krishna, A. Vallimanalan, Prog. Nat. Sci. Mater. Int., 26(2016), pp. 380-384. |
[22] | S. Varalakshmi, M. Kamaraj, B.S. Murty, Mater. Sci. Eng. A, 527(2010), pp. 1027-1030. |
[23] | K.G. Pradeep, N. Wanderka, P. Choi, J. Banhart, B.S. Murty, D. Raabe, Acta Mater, 61(2013), pp. 4696-4706. |
[24] | K.B. Zhang, Z.Y. Fu, J.Y. Zhang, W.M. Wang, S.W. Lee, K. Niihara, J. Alloys Compd., 495(2010), pp. 33-38. |
[25] | D.J. Fray, G.Z. Chen, Mater. Sci. Technol., 20(2004), pp. 295-300. |
[26] | G.Z. Chen, D.J. Fray, T.W. Farthing, Nature, 407(2000), pp. 361-364. |
[27] | G.Z. Chen, D.J. Fray, T.W. Farthing, Metall. Mater. Trans. B, 32(2001), pp. 1041-1052. |
[28] | B. Wang, J. Huang, J. Fan, Y. Dou, H. Zhu, D. Wang, J. Electrochem. Soc., 164(2017), pp. E575-E579. |
[29] | D. Tang, K. Zheng, H. Yin, X. Mao, D.R. Sadoway, D. Wang, Electrochim. Acta, 279(2018), pp. 250-257. |
[30] | K. Zheng, K. Du, X. Cheng, R. Jiang, B. Deng, H. Zhu, D. Wang, J. Electrochem. Soc., 165(2018), pp. E572-E577. |
[31] | D. Tang, H. Yin, W. Xiao, H. Zhu, X. Mao, D. Wang, J. Electroanal. Chem., 689(2013), pp. 109-116. |
[32] | D. Tang, H. Yin, X. Cheng, W. Xiao, D. Wang, Int. J. Hydrogen Energy, 41(2016), pp. 18699-18705. |
[33] | X. Cheng, D. Tang, D. Tang, H. Zhu, D. Wang, J. Electrochem. Soc., 162(2015), pp. E68-E72. |
[34] | H. Yin, D. Tang, H. Zhu, Y. Zhang, D. Wang, Electrochem. Commun., 13(2011), pp. 1521-1524. |
[35] | Y. Jin, M. Xie, S. Ai, J. Yang, Y. Yang, Y. Chen, ACS Appl. Mater. Interfaces, 7(2015), pp. 17112-17121. |
[36] | Z. Ding, J. Bian, S. Shuang, X. Liu, Y. Hu, C. Sun, Y. Yang, Adv. Sustainable Syst., 4(2020), Article 1900105. |
[37] | J.N. Tiwari, N.K. Dang, S. Sultan, P. Thangavel, H.Y. Jeong, K.S. Kim, Nat. Sustainability, 3(2020), pp. 556-563. |
[38] | S. Sultan, J.N. Tiwari, A.N. Singh, S. Zhumagali, M. Ha, C.W. Myung, P. Thangavel, K.S. Kim, Adv. Energy Mater., 9(2019), Article 1900624. |
[39] | J.N. Tiwari, A.N. Singh, S. Sultan, K.S. Kim, Adv. Energy Mater., 10(2020), Article 2000280. |
[40] | J.N. Tiwari, S. Sultan, C.W. Myung, T. Yoon, N. Li, M. Ha, A.M. Harzandi, H.J. Park, D.Y. Kim, S.S. Chandrasekaran, W.G. Lee, V. Vij, H. Kang, T.J. Shin, H.S. Shin, G. Lee, Z. Lee, K.S. Kim, Nat. Energy, 3(2018), pp. 773-782. |
[41] | J.N. Tiwari, N.K. Dang, H.J. Park, S. Sultan, M.G. Kim, J. Haiyan, Z. Lee, K.S. Kim, Nano Energy, 78(2020), Article 105166. |
[42] | S. Wang, J. Nai, S. Yang, L. Guo, ChemNanoMat, 1(2015), pp. 324-330. |
[43] | Q. Dong, Q. Wang, Z. Dai, H. Qiu, X. Dong, ACS Appl. Mater. Interfaces, 8(2016), pp. 26902-26907. |
[44] | M. Yang, Y. Li, Y. Yu, X. Liu, Z. Shi, Y. Xing, Chem.-Eur. J., 24(2018), pp. 13002-13008. |
[45] | Q. Liu, L. Xie, Z. Liu, G. Du, A.M. Asiri, X. Sun, Chem. Commun., 53(2017), pp. 12446-12449. |
[46] | X. Zou, A. Goswami, T. Asefa, J. Am. Chem. Soc., 135(2013), pp. 17242-17245. |
[47] | W. Dai, T. Lu, Y. Pan, J. Power Sources, 430(2019), pp. 104-111. |
[48] | S. Sultan, M. Ha, D.Y. Kim, J.N. Tiwari, C.W. Myung, A. Meena, T.J. Shin, K.H. Chae, K.S. Kim, Nat. Commun., 10 (2019), p.5195. |
[49] | J.N. Tiwari, A.M. Harzandi, M. Ha, S. Sultan, C.W. Myung, H.J. Park, D.Y. Kim, P. Thangavel, A.N. Singh, P. Sharma, S.S. Chandrasekaran, F. Salehnia, J.W. Jang, H.S. Shin, Z. Lee, K.S. Kim, Adv. Energy Mater., 9(2019), Article 1900931. |
[50] | H. Xie, H. Zhao, J. Qu, Q. Song, Z. Ning, H. Yin, J. Solid State Electrochem., 23(2019), pp. 903-909. |
[51] | X. Ma, H. Xie, J. Qu, Q. Song, Z. Ning, H. Zhao, H. Yin, Metall. Mater. Trans. B, 50(2019), pp. 940-949. |
[52] | X. Ma, H. Wang, H. Xie, J. Qu, X. Chen, F. Chen, Q. Song, H. Yin, J. Alloys Compd., 794(2019), pp. 455-464. |
[53] | H. Osgood, S.V. Devaguptapu, H. Xu, J. Cho, G. Wu, Nano Today, 11(2016), pp. 601-625. |
[54] | P. Ma, S. Zhang, M. Zhang, J. Gu, L. Zhang, Y. Sun, W. Ji, Z. Fu, Sci. China Mater., 63(2020), pp. 2613-2619. |
[55] | X. Cui, B. Zhang, C. Zeng, S. Guo, MRS Commun., 8(2018), pp. 1230-1235. |
[56] | A.K.M. Fazle Kibria, S.A. Tarafdar, Int. J. Hydrogen Energy, 27(2002), pp. 879-884. |
[57] | H. Yuan, B.T. Kusema, Z. Yan, S. Streiff, F. Shi, RSC Adv., 9(2019), pp. 38877-38881. |
[58] | S.M. Pawar, B.S. Pawar, B. Hou, J. Kim, A.T. Aqueel Ahmed, H.S. Chavan, Y. Jo, S. Cho, A.I. Inamdar, J.L. Gunjakar, H. Kim, S. Cha, H. Im, J. Mater. Chem. A, 5(2017), pp. 12747-12751. |
[59] | X. Li, Y. Wang, J. Wang, Y. Da, J. Zhang, L. Li, C. Zhong, Y. Deng, X. Han, W. Hu, Adv. Mater., 32(2020), Article 2003414. |
[60] | W. Wu, P. Xia, Y. Xuan, R. Yang, M. Chen, D. Jiang, Nanotechnology, 31(2020), Article 405705. |
[61] | C. Shang, X. Zhang, L. Shui, Z. Chen, H. Liao, M. Li, X. Wang, G. Zhou, Appl. Surf. Sci., 457(2018), pp. 804-808. |
[62] | Y. Zhuang, J. Liu, S. Yuan, B. Ge, H. Du, C. Qu, H. Chen, C. Wu, W. Li, Y. Zhang, Appl. Surf. Sci., 515(2020), Article 146083. |
[63] | Y. Teng, X.D. Wang, J.F. Liao, W.G. Li, H.Y. Chen, Y.J. Dong, D. Bin Kuang, Adv. Funct. Mater., 28(2018), Article 1802463. |
[64] | M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson, R.S.C. Smart, Appl. Surf. Sci., 257(2011), pp. 2717-2730. |
[65] | L. Pi, N. Yang, W. Han, W. Xiao, D. Wang, Y. Xiong, M. Zhou, H. Hou, X. Mao, Chem. Eng. J., 334(2018), pp. 1297-1308. |
[66] | S. Feliu, V. Barranco, Acta Mater, 51(2003), pp. 5413-5424. |
[67] | S. Dutta, C. Ray, Y. Negishi, T. Pal, ACS Appl. Mater. Interfaces, 9(2017), pp. 8134-8141. |
[68] | X. Liu, Z. Chang, L. Luo, T. Xu, X. Lei, J. Liu, X. Sun, Chem. Mater., 26(2014), pp. 1889-1895. |
[69] | H.J. Qiu, G. Fang, J. Gao, Y. Wen, J. Lv, H. Li, G. Xie, X. Liu, S. Sun, ACS Mater. Lett., 1(2019), pp. 526-533. |
[1] | Guanglu Li, Chang Liu, Zhao Zhang, Baihua Cui, Yanan Chen, Yida Deng, Wenbin Hu. Nano-manufacturing of Co(OH)2@NC for efficient oxygen evolution/reduction reactions [J]. J. Mater. Sci. Technol., 2021, 81(0): 131-138. |
[2] | Zhihua Dong, Shuo Huang, Valter Ström, Guocai Chai, Lajos Károly Varga, Olle Eriksson, Levente Vitos. MnxCr0.3Fe0.5Co0.2Ni0.5Al0.3 high entropy alloys for magnetocaloric refrigeration near room temperature [J]. J. Mater. Sci. Technol., 2021, 79(0): 15-20. |
[3] | J. Tang, J.L. Xu, Z.G. Ye, X.B. Li, J.M. Luo. Microwave sintered porous CoCrFeNiMo high entropy alloy as an efficient electrocatalyst for alkaline oxygen evolution reaction [J]. J. Mater. Sci. Technol., 2021, 79(0): 171-177. |
[4] | Bin Zhang, Yuping Duan, Haifeng Zhang, Shuo Huang, Guojia Ma, Tongmin Wang, Xinglong Dong, . Magnetic transformation of Mn from anti-ferromagnetism to ferromagnetism in FeCoNiZMnx (Z = Si, Al, Sn, Ge) high entropy alloys [J]. J. Mater. Sci. Technol., 2021, 68(0): 124-131. |
[5] | Yuankui Cao, Weidong Zhang, Bin Liu, Yong Liu, Meng Du, Ao Fu. Phase decomposition behavior and its effects on mechanical properties of TiNbTa0.5ZrAl0.5 refractory high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 66(0): 10-20. |
[6] | Jie Xu, Xuan Kong, Minghui Chen, Qunchang Wang, Fuhui Wang. High-entropy FeNiCoCr alloys with improved mechanical and tribological properties by tailoring composition and controlling oxidation [J]. J. Mater. Sci. Technol., 2021, 82(0): 207-213. |
[7] | Lili Xiao, Ping Huang, Fei Wang. Inverse grain-size-dependent strain rate sensitivity of face-centered cubic high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 86(0): 251-259. |
[8] | Yao Pang, Wence Xu, Shengli Zhu, Zhenduo Cui, Yanqin Liang, Zhaoyang Li, Shuilin Wu, Chuntao Chang, Shuiyuan Luo. Self-supporting amorphous nanoporous NiFeCoP electrocatalyst for efficient overall water splitting [J]. J. Mater. Sci. Technol., 2021, 82(0): 96-104. |
[9] | H.T. Jeong, W.J. Kim. Microstructure tailoring of Al0.5CoCrFeMnNi to achieve high strength and high uniform strain using severe plastic deformation and an annealing treatment [J]. J. Mater. Sci. Technol., 2021, 71(0): 228-240. |
[10] | Feng He, Bin Han, Zhongsheng Yang, Da Chen, Guma Yeli, Yang Tong, Daixiu Wei, Junjie Li, Zhijun Wang, Jincheng Wang, Ji-jung Kai. Elemental partitioning as a route to design precipitation-hardened high entropy alloys [J]. J. Mater. Sci. Technol., 2021, 72(0): 52-60. |
[11] | Mehmet Cagirici, Pan Wang, Fern Lan Ng, Mui Ling Sharon Nai, Jun Ding, Jun Wei. Additive manufacturing of high-entropy alloys by thermophysical calculations and in situ alloying [J]. J. Mater. Sci. Technol., 2021, 94(0): 53-66. |
[12] | Manigandan Ramadoss, Yuanfu Chen, Yang Hu, Bin Wang, Ramkumar Jeyagopal, Karpuraranjith Marimuthu, Xinqiang Wang, Dongxu Yang. Hierarchically porous nanoarchitecture constructed by ultrathin CoSe2 embedded Fe-CoO nanosheets as robust electrocatalyst for water oxidation [J]. J. Mater. Sci. Technol., 2021, 78(0): 229-237. |
[13] | Ruobin Chang, Wei Fang, Jiaohui Yan, Haoyang Yu, Xi Bai, Jia Li, Shiying Wang, Shijian Zheng, Fuxing Yin. Microstructure and mechanical properties of CoCrNi-Mo medium entropy alloys: Experiments and first-principle calculations [J]. J. Mater. Sci. Technol., 2021, 62(0): 25-33. |
[14] | Zibing An, Shengcheng Mao, Yinong Liu, Hao Zhou, Yadi Zhai, Zhiyong Tian, Cuixiu Liu, Ze Zhang, Xiaodong Han. Hierarchical grain size and nanotwin gradient microstructure for improved mechanical properties of a non-equiatomic CoCrFeMnNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 92(0): 195-207. |
[15] | Yuan Yu, Nannan Xu, Shengyu Zhu, Zhuhui Qiao, Jianbin Zhang, Jun Yang, Weimin Liu. A novel Cu-doped high entropy alloy with excellent comprehensive performances for marine application [J]. J. Mater. Sci. Technol., 2021, 69(0): 48-59. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||