J. Mater. Sci. Technol. ›› 2021, Vol. 93: 119-127.DOI: 10.1016/j.jmst.2021.03.052
• Original article • Previous Articles Next Articles
Yan Lia, Xingwang Chenga,*(), Zhaolong Maa, Xuhai Lib, Meng Wanga
Accepted:
2021-02-09
Published:
2021-12-10
Online:
2021-12-10
Contact:
Xingwang Cheng
About author:
*E-mail address: chengxw@bit.edu.cn (X. Cheng).Yan Li, Xingwang Cheng, Zhaolong Ma, Xuhai Li, Meng Wang. Dynamic response and damage evolution of Zr-based bulk metallic glass under shock loading[J]. J. Mater. Sci. Technol., 2021, 93: 119-127.
material | ρ0 g/cm3 | CL km/s | ν | Diameter mm | Thickness mm |
---|---|---|---|---|---|
BMG | 6.74 | 4.82 | 0.35 | 20 | 3.0 |
Cu | 8.96 | 4.70 | 0.36 | 56 | 1.5 |
Table 1. Material parameters of Zr70Cu13Ni9.8Al3.6Nb3.4Y0.2 investigated.
material | ρ0 g/cm3 | CL km/s | ν | Diameter mm | Thickness mm |
---|---|---|---|---|---|
BMG | 6.74 | 4.82 | 0.35 | 20 | 3.0 |
Cu | 8.96 | 4.70 | 0.36 | 56 | 1.5 |
Numbering | Flyer speed km/s | Flyer particle velocity km/s | Particle velocity of free surface 1 u1 km/s | Particle velocity of free surface 2 u2 km/s | Elastic region | Plastic region | Spall strength GPa | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
DHEL km/s | uHEL km/s | σHELGPa | Ds km/s | us km/s | P GPa | V | ||||||
1# | 0.29 | 0.23 | 0.2928 | - | 4.0859 | 0.1464 | 4.0317 | - | - | 4.0317 | 0.1430 | 2.2757 |
2# | 0.37 | 0.30 | 0.3968 | - | 4.6559 | 0.1984 | 6.2260 | - | - | 6.2260 | 0.1420 | 2.3631 |
3# | 0.47 | 0.38 | 0.3893 | 0.5031 | 5.0608 | 0.1946 | 6.6394 | 4.1252 | 0.2516 | 8.2847 | 0.1393 | 1.8688 |
4# | 0.65 | 0.53 | 0.4374 | 0.6765 | 4.8147 | 0.2187 | 7.0970 | 4.6391 | 0.3383 | 11.0129 | 0.1376 | 2.4992 |
5# | 1.00 | 0.84 | 0.4367 | 1.0865 | 4.8218 | 0.2184 | 7.0961 | 4.6140 | 0.5433 | 17.6793 | 0.1322 | 2.3826 |
6# | 1.48 | 1.25 | - | 1.6443 | - | - | - | 4.9140 | 0.8222 | 27.2299 | 0.1235 | 2.3104 |
Table 2. Summary of wave profile measurements of Zr70Cu13Ni9.8Al3.6Nb3.4Y0.2.
Numbering | Flyer speed km/s | Flyer particle velocity km/s | Particle velocity of free surface 1 u1 km/s | Particle velocity of free surface 2 u2 km/s | Elastic region | Plastic region | Spall strength GPa | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
DHEL km/s | uHEL km/s | σHELGPa | Ds km/s | us km/s | P GPa | V | ||||||
1# | 0.29 | 0.23 | 0.2928 | - | 4.0859 | 0.1464 | 4.0317 | - | - | 4.0317 | 0.1430 | 2.2757 |
2# | 0.37 | 0.30 | 0.3968 | - | 4.6559 | 0.1984 | 6.2260 | - | - | 6.2260 | 0.1420 | 2.3631 |
3# | 0.47 | 0.38 | 0.3893 | 0.5031 | 5.0608 | 0.1946 | 6.6394 | 4.1252 | 0.2516 | 8.2847 | 0.1393 | 1.8688 |
4# | 0.65 | 0.53 | 0.4374 | 0.6765 | 4.8147 | 0.2187 | 7.0970 | 4.6391 | 0.3383 | 11.0129 | 0.1376 | 2.4992 |
5# | 1.00 | 0.84 | 0.4367 | 1.0865 | 4.8218 | 0.2184 | 7.0961 | 4.6140 | 0.5433 | 17.6793 | 0.1322 | 2.3826 |
6# | 1.48 | 1.25 | - | 1.6443 | - | - | - | 4.9140 | 0.8222 | 27.2299 | 0.1235 | 2.3104 |
Fig. 4. Macroscopic morphologies of the collected samples after planar impact experiment at pressures of (a)4.03 GPa; (b)6.22 GPa; (c)8.28 GPa; (d)11.01 GPa; (e)17.67 GPa; (f)27.23 GPa.
Fig. 8. Fracture morphology of recovered samples under different impact pressures: (a)4.03 GPa; (b)6.22 GPa; (c)8.28 GPa; (d)11.01 GPa; (e)17.67 GPa; (f)27.23 GPa.
[1] | L.C. Zhang, Z. Jia, F. Lyu, S.X. Liang, J. Lu, Prog. Mater. Sci., 105(2019), Article 100576. |
[2] | C. Schuh, T. Hufnagel, U. Ramamurty, Acta Mater., 55(2007), pp. 4067-4109. |
[3] | B.A. Sun, W.H. Wang, Prog. Mater. Sci., 74(2015), pp. 211-307. |
[4] | A.L. Greer, Y.Q. Cheng, E. Ma, Mater. Sci. Eng. R Rep., 74(2013), pp. 71-132. |
[5] | M.M. Trexler, N.N. Thadhani, Prog. Mater. Sci., 55(2010), pp. 759-839. |
[6] | J. Zhang, Y. Liu, H. Yang, Y. Ren, L. Cui, D. Jiang, Z. Wu, Z. Ma, F. Guo, S. Bakhtiari, F. Motazedian, J. Li, Mater. Today, 37(2020), pp. 18-26. |
[7] | J.C. Qiao, Q. Wang, J.M. Pelletier, H. Kato, R. Casalini, D. Crespo, E. Pineda, Y. Yao, Y. Yang, Prog. Mater. Sci., 104(2019), pp. 250-329. |
[8] | J.H. Chen, M.Q. Jiang, Y. Chen, L.H. Dai, Mater. Sci. Eng. A, 576 (4)(2013), pp. 134-139. |
[9] | J. Zhang, J.M. Park, D.H. Kim, H.S. Kim, Mater. Sci. Eng. A, 449-451(2007), pp. 290-294. |
[10] | W. Taylor J, H. Rice M, J. Appl. Phys., V 34 (2)(1963), pp. 364-371. |
[11] | S. Zhuang, J. Lu, G. Ravichandran, Appl. Phys. Lett., 80(2002), pp. 4522-4524. |
[12] | T. Mashimo, H. Togo, Y. Zhang, Y. Uemura, T. Kinoshita, M. Kodama, Y. Kawamura, Appl. Phys. Lett., 89(2006), Article 241904. |
[13] | M. Martin, T. Sekine, T. Kobayashi, L. Kecskes, N.N. Thadhani, Metall. Mater. Trans. A, 38(2007), pp. 2689-2696. |
[14] | F. Xi, Y. Yu, C. Dai, Y. Zhang, L. Cai, J. Appl. Phys., 108(2010), Article 083537. |
[15] | B. Luo, G. Wang, F. Tan, J. Zhao, C. Liu, C. Sun, AIP Adv, 5(2015), Article 067161. |
[16] | S.J. Turneaure, J.M. Winey, Y.M. Gupta, J. Appl. Phys., 100(2006), Article 063522. |
[17] | Y.Y. Yu, F. Xi, C.D. Dai, L.C. Cai, Y. Tan, X.M. Li, Q. Wu, H. Tan, Chin. Phys. B, 24(2015), pp. 465-469. |
[18] | L. Lu, C. Li, W.H. Wang, M.H. Zhu, X.L. Gong, S.N. Luo, Mater. Sci. Eng. A, 651(2016), pp. 848-853. |
[19] | C.T. Wei, E. Vitali, F. Jiang, S.W. Du, D.J. Benson, K.S. Vecchio, N.N. Thadhani, M.A. Meyers, Acta Mater, 60(2012), pp. 1418-1432. |
[20] | C. Yang, R.P. Liu, B.Q. Zhang, Q. Wang, Z.J. Zhan, L.L. Sun, J. Zhang, Z.Z. Gong, W.K. Wang, J. Mater. Sci., 40(2005), pp. 3917-3920. |
[21] | F. Yuan, V. Prakash, J.J. Lewandowski, J. Mater. Res., 22(2006), pp. 402-411. |
[22] | B.A. Sun, S. Pauly, J. Tan, M. Stoica, W.H. Wang, U. Kühn, J. Eckert, Acta Mater, 60(2012), pp. 4160-4171. |
[23] | S.X. Song, H. Bei, J. Wadsworth, T.G. Nieh, Intermetallics, 16(2008), pp. 813-818. |
[24] | T. Antoun, Spall Fracture, Springer, New York (2003). |
[25] | Bedri Arman, Sheng-Nian Luo, C. Timothy, Phys. Rev. B, 81(2010), Article 144201. |
[26] | J. Pan, Y.P. Ivanov, W.H. Zhou, Y. Li, A.L. Greer, Nature, 578(2020), pp. 559-562. |
[27] | M.Q. Jiang, G. Wilde, C.B. Qu, F. Jiang, H.M. Xiao, J.H. Chen, S.Y. Fu, L.H. Dai, Philos. Mag. Lett., 94(2014), pp. 669-677. |
[28] | X.C. Tang, W.R. Jian, J.Y. Huang, F. Zhao, C. Li, X.H. Xiao, X.H. Yao, S.N. Luo, Mater. Sci. Eng. A, 711(2018), pp. 284-292. |
[29] | L.F. Liu, L.H. Dai, Y.L. Bai, B.C. Wei, J. Non-Cryst. Solids, 351(2005), pp. 3259-3270. |
[30] | J.P. Escobedo, Y.M. Gupta, J. Appl. Phys., 107(2011), Article 123502. |
[31] | B.P. Wang, L. Wang, S. Wang, Q.B. Fan, Y.F. Xue, H.F. Zhang, H.M. Fu, Intermetallics, 63(2015), pp. 12-18. |
[32] | K.M. Flores, R.H. Dauskardt, Acta Mater, 49 (13)(2001), pp. 2527-2537. |
[1] | Zhenni Lei, Pengfei Gao, Xianxian Wang, Mei Zhan, Hongwei Li. Analysis of anisotropy mechanism in the mechanical property of titanium alloy tube formed through hot flow forming [J]. J. Mater. Sci. Technol., 2021, 86(0): 77-90. |
[2] | Xin Lin, Yuanyuan Zhang, Gaolin Yang, Xuehao Gao, Qiao Hu, Jun Yu, Lei Wei, Weidong Huang. Microstructure and compressive/tensile characteristic of large size Zr-based bulk metallic glass prepared by laser solid forming [J]. J. Mater. Sci. Technol., 2019, 35(2): 328-335. |
[3] | Wang Yimei, Liu Yan, Liu Lin. Fatigue Behaviors of a Ni-free ZrCuFeAlAg Bulk Metallic Glass in Simulated Body Fluid [J]. J. Mater. Sci. Technol., 2014, 30(6): 622-626. |
[4] | Yongxiang ZHAO. Size Evolution of the Surface Short Fatigue Cracks of 1Cr18Ni9Ti Weld Metal [J]. J Mater Sci Technol, 2003, 19(02): 129-132. |
[5] | Sergey N.Kulkov Alexander G.Melnikov Institute of Strength Physics and Materials Science,The Russian Academy.of Science,Siberian Branch,Tomsk,634055,RussiaYanchun ZHOU Shengqi CHEN Zhe QU Institute of Metal Research,Academia Sinica,Shenyang,110015,China. Phase Transformations in ZrO_2 after Shock Loading [J]. J Mater Sci Technol, 1993, 9(1): 32-36. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||