J. Mater. Sci. Technol. ›› 2021, Vol. 87: 46-53.DOI: 10.1016/j.jmst.2021.01.039
• Research Article • Previous Articles Next Articles
Zeming Gua,b,1, Qi Wanga,1, Xiaoqin Suna, Lingwei Lua, Yuwei Zhanga, Ran Wanga, Shu Jina, Yinlin Shaoa, Jun Qiana,*(), Xiaoxiang Xua,*(
)
Received:
2020-11-27
Revised:
2021-01-04
Accepted:
2021-01-04
Published:
2021-10-10
Online:
2021-03-08
Contact:
Jun Qian,Xiaoxiang Xu
About author:
xxxu@tongji.edu.cn (X. Xu).Zeming Gu, Qi Wang, Xiaoqin Sun, Lingwei Lu, Yuwei Zhang, Ran Wang, Shu Jin, Yinlin Shao, Jun Qian, Xiaoxiang Xu. SrTiO3-CaCr0.5Nb0.5O3 solid solutions as p-type photocatalysts for Z-scheme water splitting under visible light illumination[J]. J. Mater. Sci. Technol., 2021, 87: 46-53.
Fig. 1. X-ray diffraction (XRD) patterns of (SrTiO3)1-x(CaCr0.5Nb0.5O3)x (x = 0.00, 0.05, 0.10, 0.15, 0.20 and 1.0), standard patterns of SrTiO3 (JCPDS: 00-035-0734) and CaCr0.5Nb0.5O3 (JCPDS: 01-089-0365) are included for comparisons. Main reflection around 32° is enlarged on the right. Dotted line is a guide for the eye.
Fig. 2. Rietveld refinement of XRD data for (SrTiO3)0.95(CaCr0.5Nb0.5O3)0.05 (x = 0.05), a good R-factor and χ2 has been achieved (Rp = 7.67 %, Rwp = 9.94 %, χ2 = 1.495). The inset shows the refined crystal structure. Here, Rp = 100 × Ʃ ǀYobs - Ycalcǀ / Ʃ Yobs, Rwp = 100 × Ʃ w ǀYobs - Ycalcǀ2/ Ʃ w ǀYobsǀ2, χ2 = 100 × Ʃ w ǀYobs - Ycalcǀ2/ (Nobs - Nvar) and Yobs = observed intensity, Ycalc = calculated intensity, Nobs = number of observations, Nvar = number of variables.
Sample | Space group | Unit cell parameters | V (Å3) | BET surface area (m2/g) | Band gap (eV) |
---|---|---|---|---|---|
SrTiO3 | Pm3m | a = 3.9037(1) Å | 59.492(2) | 0.2(1) | 3.3(1) |
x = 0.05 | Pm3m | a = 3.9025(4) Å | 59.433(1) | 0.6(1) | 2.2(1) |
x = 0.10 | Pm3m | a = 3.8982(7) Å | 59.236(9) | 2.5(1) | 2.3(1) |
x = 0.15 | Pm3m | a = 3.8962(7) Å | 59.145(7) | 2.3(1) | 2.3(1) |
CaCr0.5Nb0.5O3 | P21/n | a = 5.4213(3) Å | 229.18(3) | 0.1(1) | - |
b = 5.4849(3) Å | |||||
c = 7.7073(4) Å | |||||
α = γ = 90° | |||||
β = 90.07(1)° |
Table 1 Unit cell parameters, BET surface area and band gap values of sample powders, standard deviation is included in the parenthesis.
Sample | Space group | Unit cell parameters | V (Å3) | BET surface area (m2/g) | Band gap (eV) |
---|---|---|---|---|---|
SrTiO3 | Pm3m | a = 3.9037(1) Å | 59.492(2) | 0.2(1) | 3.3(1) |
x = 0.05 | Pm3m | a = 3.9025(4) Å | 59.433(1) | 0.6(1) | 2.2(1) |
x = 0.10 | Pm3m | a = 3.8982(7) Å | 59.236(9) | 2.5(1) | 2.3(1) |
x = 0.15 | Pm3m | a = 3.8962(7) Å | 59.145(7) | 2.3(1) | 2.3(1) |
CaCr0.5Nb0.5O3 | P21/n | a = 5.4213(3) Å | 229.18(3) | 0.1(1) | - |
b = 5.4849(3) Å | |||||
c = 7.7073(4) Å | |||||
α = γ = 90° | |||||
β = 90.07(1)° |
Fig. 3. Field emission scanning electron microscopic (FESEM) images of (SrTiO3)1-x(CaCr0.5Nb0.5O3)x (x = 0.00, 0.05, 0.10, 0.15 and 1.0): (a) SrTiO3; (b) x = 0.05; (c) x = 0.10; (d) x = 0.15; (e) CaCr0.5Nb0.5O3 and (f) digital photograph of all sample powders.
Fig. 6. (a) Temporal photocatalytic H2 production of (SrTiO3)1-x(CaCr0.5Nb0.5O3)x (x = 0.00, 0.05, 0.10, 0.15 and 1.0) under visible light illumination (λ ≥ 400 nm), methanol aqueous solution (10 vol%) and 1 wt% Pt was used as sacrificial agent and cocatalyst, respectively; (b) temporal photocatalytic H2 production of (SrTiO3)0.85(CaCr0.5Nb0.5O3)0.15 loaded with different amounts of Pt cocatalyst, methanol aqueous solution (10 vol%) was used as the sacrificial agent; (c) repeated cycles of photocatalytic H2 production of (SrTiO3)0.85(CaCr0.5Nb0.5O3)0.15 under visible light illumination (λ ≥ 400 nm); (d) action spectra of (SrTiO3)0.85(CaCr0.5Nb0.5O3)0.15 for photocatalytic H2 production.
Fig. 7. Linear sweep voltammetry of SrTiO3 and (SrTiO3)0.85(CaCr0.5Nb0.5O3)0.15 under chopped (a) visible light illumination (λ ≥ 400 nm) and (b) AM 1.5 illumination; (c) Mott-Schottky analysis of SrTiO3 and (SrTiO3)0.85(CaCr0.5Nb0.5O3)0.15; (d) schematic representation of band structures of SrTiO3 and (SrTiO3)0.85(CaCr0.5Nb0.5O3)0.15.
Fig. 8. Open-circuit voltage (Voc) decay profile of (SrTiO3)0.85(CaCr0.5Nb0.5O3)0.15, visible light illumination was started once Voc was stabilized in the dark and was terminated after 100 s. Methanol (10 vol%) was added to the electrolyte after 600 s of light termination.
Fig. 9. Z-scheme photocatalytic water splitting of admixtures of (SrTiO3)0.85(CaCr0.5Nb0.5O3)0.15 (50 mg) and WO3 (50 mg) under visible light illumination (λ ≥ 400 nm), 1 wt% Pt was loaded onto both compounds as the cocatalyst, NaI/NaIO3 aqueous solution (5 mM) was used as the redox shutter, evacuation was performed every 2.5 h.
[1] |
J.A. Turner, Science 285 (1999) 687-689.
DOI URL |
[2] |
J.A. Turner, Science 305 (2004) 972-974.
PMID |
[3] |
T. Takata, J.Z. Jiang, Y. Sakata, M. Nakabayashi, N. Shibata, V. Nandal, K. Seki, T. Hisatomi, K. Domen, Nature 581 (2020) 411-414.
DOI URL |
[4] |
A. Listorti, J. Durrant, J. Barber, Nat. Mater. 8 (2009) 929-930.
DOI PMID |
[5] |
X.X. Xu, C. Randorn, P. Efstathiou, J.T.S. Irvine, Nat. Mater. 11 (2012) 595-598.
DOI URL |
[6] |
Y. Goto, T. Hisatomi, Q. Wang, T. Higashi, K. Ishikiriyama, T. Maeda, Y. Sakata, S. Okunaka, H. Tokudome, M. Katayama, S. Akiyama, H. Nishiyama, Y. Inoue, T. Takewaki, T. Setoyama, T. Minegishi, T. Takata, T. Yamada, K. Domen, Joule 2 (2018) 509-520.
DOI URL |
[7] |
T.H. Chiang, H. Lyu, T. Hisatomi, Y. Goto, T. Takata, M. Katayama, T. Minegishi, K. Domen, ACS Catal. 8 (2018) 2782-2788.
DOI URL |
[8] |
Y. Miseki, H. Kato, A. Kudo, Energy Environ. Sci. 2 (2009) 306-314.
DOI URL |
[9] |
H. Kato, K. Asakura, A. Kudo, J. Am. Chem. Soc. 125 (2003) 3082-3089.
DOI URL |
[10] |
S.S. Chen, T. Takata, K. Domen, Nat. Rev. Mater. 2 (2017) 17050.
DOI URL |
[11] |
Q. Wang, T. Hisatomi, Q.X. Jia, H. Tokudome, M. Zhong, C.Z. Wang, Z.H. Pan, T. Takata, M. Nakabayashi, N. Shibata, Y.B. Li, I.D. Sharp, A. Kudo, T. Yamada, K. Domen, Nat. Mater. 15 (2016) 611-615.
DOI URL |
[12] |
A. Kudo, MRS Bull. 36 (2011) 32-38.
DOI URL |
[13] |
Q. Wang, T. Hisatomi, Y. Suzuki, Z.H. Pan, J. Seo, M. Katayama, T. Minegishi, H. Nishiyama, T. Takata, K. Seki, A. Kudo, T. Yamada, K. Domen, J. Am. Chem. Soc. 139 (2017) 1675-1683.
DOI URL |
[14] | X.P. Tao, Y. Zhao, L.C. Mu, S.Y. Wang, R.G. Li, C. Li, Adv. Energy Mater. 8 (2018). |
[15] |
H. Fujito, H. Kunioku, D. Kato, H. Suzuki, M. Higashi, H. Kageyama, R. Abe, J. Am. Chem. Soc. 138 (2016) 2082-2085.
DOI URL |
[16] |
C.W. Dong, S.Y. Lu, S.Y. Yao, R. Ge, Z.D. Wang, Z. Wang, P.F. An, Y. Liu, B. Yang, H. Zhang, ACS Catal. 8 (2018) 8649-8658.
DOI URL |
[17] |
H. Kato, M. Hori, R. Konta, Y. Shimodaira, A. Kudo, Chem. Lett. 33 (2004) 1348-1349.
DOI URL |
[18] |
Q. Wang, T. Hisatomi, S.S.K. Ma, Y.B. Li, K. Domen, Chem. Mater. 26 (2014) 4144-4150.
DOI URL |
[19] |
S. S.K.Ma, K. Maeda, T. Hisatomi, M. Tabata, A. Kudo, K. Domen, Chem-Eur. J. 19 (2013) 7480-7486.
DOI URL |
[20] |
K. Maeda, ACS Appl. Mater. Interface 6 (2014) 2167-2173.
DOI URL |
[21] |
B.H. Toby, J. Appl. Crystallogr. 34 (2001) 210-213.
DOI URL |
[22] |
G. Kortum, W. Braun, G. Herzog, Angew. Chem. Int. Ed 2 (1963) 333-341.
DOI URL |
[23] |
X.X. Xu, A.K. Azad, J.T.S. Irvine, Catal. Today 199 (2013) 22-26.
DOI URL |
[24] |
R.D. Shannon, Acta Crystallogr. A 32 (1976) 751-767.
DOI URL |
[25] | R.D. Shannon, C.T. Prewitt, Acta Crystall. B-Struct. B 26 (1970) 1046-1048. |
[26] |
R.D. Shannon, C.T. Prewitt, Acta Crystallogr. B 25 (1969) 925-946.
DOI URL |
[27] | W.D. Kingery, H.K. Bowen, D.R. Uhlmann, Introduction to Ceramics, John Wiley & Sons, Inc, New York, 1975. |
[28] |
Y.S. Jia, S. Shen, D.G. Wang, X. Wang, J.Y. Shi, F.X. Zhang, H.X. Han, C. Li, J. Mater. Chem. A 1 (2013) 7905-7912.
DOI URL |
[29] |
T. Ishii, H. Kato, A. Kudo, J. Photochem. Photobiol. A 163 (2004) 181-186.
DOI URL |
[30] |
J.W. Liu, G. Chen, Z.H. Li, Z.G. Zhang, J. Solid State Chem. 179 (2006) 3704-3708.
DOI URL |
[31] |
P. Reunchan, S.X. Ouyang, N. Umezawa, H. Xu, Y.J. Zhang, J.H. Ye, J. Mater. Chem. A 1 (2013) 4221-4227.
DOI URL |
[32] |
U. Sulaeman, S. Yin, T. Sato, Appl. Catal. B-Environ. 105 (2011) 206-210.
DOI URL |
[33] |
F. Ichihara, F. Sieland, H. Pang, D. Philo, A.T. Duong, K. Chang, T. Kako, D.W. Bahnemann, J.H. Ye, J. Phys. Chem. C 124 (2020) 1292-1302.
DOI URL |
[34] |
H.O. Finklea, J. Chem. Educ. 60 (1983) 325-327.
DOI URL |
[35] |
S.H. Wei, X.X. Xu, Appl. Catal. B-Environ. 228 (2018) 10-18.
DOI URL |
[36] |
E.B. Hua, S. Jin, X.R. Wang, S. Ni, G. Liu, X.X. Xu, Appl. Catal. B-Environ. 245 (2019) 733-742.
DOI URL |
[37] |
X.X. Xu, M.L. Lv, X.Q. Sun, G. Liu, J. Mater. Sci. 51 (2016) 6464-6473.
DOI URL |
[38] | F.F. Wu, M.L. Lv, X.Q. Sun, Y.H. Xie, H.M. Chen, S. Ni, G. Liu, X.X. Xu, Chem Cat Chem 8 (2016) 615-623. |
[39] |
K. Gelderman, L. Lee, S.W. Donne, J. Chem. Educ. 84 (2007) 685-688.
DOI URL |
[40] |
W.P. Gomes, F. Cardon, Prog. Surf. Sci. 12 (1982) 155-215.
DOI URL |
[41] |
D.E. Scaife, Sol. Energy 25 (1980) 41-54.
DOI URL |
[42] |
J.A. Turner, J. Chem. Educ. 60 (1983) 327-329.
DOI URL |
[1] | Rui Jiang, Shengnan Qian, Chuang Dong, Ying Qin, Yujuan Wu, Jianxin Zou, Xiaoqin Zeng. Composition optimization of high-strength Mg-Gd-Y-Zr alloys based on the structural unit of Mg-Gd solid solution [J]. J. Mater. Sci. Technol., 2021, 72(0): 104-113. |
[2] | Yujie Chen, Yan Fang, Xiaoqian Fu, Yiping Lu, Sijing Chen, Hongbin Bei, Qian Yu. Origin of strong solid solution strengthening in the CrCoNi-W medium entropy alloy [J]. J. Mater. Sci. Technol., 2021, 73(0): 101-107. |
[3] | Bin Wang, Yuanfu Chen, Qi Wu, Yingjiong Lu, Xiaojuan Zhang, Xinqiang Wang, Bo Yu, DongXu Yang, Wanli Zhang. A co-coordination strategy to realize janus-type bimetallic phosphide as highly efficient and durable bifunctional catalyst for water splitting [J]. J. Mater. Sci. Technol., 2021, 74(0): 11-20. |
[4] | D.D. Zhang, H. Wang, J.Y. Zhang, H. Xue, G. Liu, J. Sun. Achieving excellent strength-ductility synergy in twinned NiCoCr medium-entropy alloy via Al/Ta co-doping [J]. J. Mater. Sci. Technol., 2021, 87(0): 184-195. |
[5] | Hengming Huang, Kan Hu, Chen Xue, Zhiliang Wang, Zhenggang Fang, Ling Zhou, Menglong Sun, Zhongzi Xu, Jiahui Kou, Lianzhou Wang, Chunhua Lu. Metal-free π-conjugated hybrid g-C3N4 with tunable band structure for enhanced visible-light photocatalytic H2 production [J]. J. Mater. Sci. Technol., 2021, 87(0): 207-215. |
[6] | Yogesh Kumar, Rohit Kumar, Pankaj Raizada, Aftab Aslam Parwaz Khan, Quyet Van Le, Pardeep Singh, Van-Huy Nguyen. Novel Z-Scheme ZnIn2S4-based photocatalysts for solar-driven environmental and energy applications: Progress and perspectives [J]. J. Mater. Sci. Technol., 2021, 87(0): 234-257. |
[7] | Chatchai Rodwihok, Korakot Charoensri, Duangmanee Wongratanaphisan, Won Mook Choi, Seung Hyun Hur, Hyun Jin Park, Jin Suk Chung. Improved photocatalytic activity of surface charge functionalized ZnO nanoparticles using aniline [J]. J. Mater. Sci. Technol., 2021, 76(0): 1-10. |
[8] | Dong-Eun Lee, Satyanarayana Moru, Wan-Kuen Jo, Surendar Tonda. Porous g-C3N4-encapsulated TiO2 hollow sphere as a high-performance Z-scheme hybrid for solar-induced photocatalytic abatement of environmentally toxic pharmaceuticals [J]. J. Mater. Sci. Technol., 2021, 82(0): 21-32. |
[9] | Yao Pang, Wence Xu, Shengli Zhu, Zhenduo Cui, Yanqin Liang, Zhaoyang Li, Shuilin Wu, Chuntao Chang, Shuiyuan Luo. Self-supporting amorphous nanoporous NiFeCoP electrocatalyst for efficient overall water splitting [J]. J. Mater. Sci. Technol., 2021, 82(0): 96-104. |
[10] | Hemdan S.H. Mohamed, Mohamed Rabia, Xian-Gang Zhou, Xu-Sen Qin, Gomaa Khabiri, Mohamed Shaban, Hussein A. Younus, S. Taha, Zhi-Yi Hu, Jing Liu, Yu Li, Bao-Lian Su. Phase-junction Ag/TiO2 nanocomposite as photocathode for H2 generation [J]. J. Mater. Sci. Technol., 2021, 83(0): 179-187. |
[11] | Yuanmei Xu, Xiaoqin Zhang, Zhihong Chen, Krzysztof Kempa, Xin Wang, Lingling Shui. Chemical vapor deposition of amorphous molybdenum sulphide on black phosphorus for photoelectrochemical water splitting [J]. J. Mater. Sci. Technol., 2021, 68(0): 1-7. |
[12] | Hongyan Wang, Ran Wei, Xiumin Li, Xuli Ma, Xiaogang Hao, Guoqing Guan. Nanostructured amorphous Fe29Co27Ni23Si9B12 high-entropy-alloy: an efficient electrocatalyst for oxygen evolution reaction [J]. J. Mater. Sci. Technol., 2021, 68(0): 191-198. |
[13] | Wei Zhao, Tiantian She, Jingyi Zhang, Guoxiang Wang, Sujuan Zhang, Wei Wei, Gang Yang, Lili Zhang, Dehua Xia, Zhipeng Cheng, Haibao Huang, Dennis Y.C. Leung. A novel Z-scheme CeO2/g-C3N4 heterojunction photocatalyst for degradation of Bisphenol A and hydrogen evolution and insight of the photocatalysis mechanism [J]. J. Mater. Sci. Technol., 2021, 85(0): 18-29. |
[14] | Zibing An, Shengcheng Mao, Yinong Liu, Li Wang, Hao Zhou, Bin Gan, Ze Zhang, Xiaodong Han. A novel HfNbTaTiV high-entropy alloy of superior mechanical properties designed on the principle of maximum lattice distortion [J]. J. Mater. Sci. Technol., 2021, 79(0): 109-117. |
[15] | Yuyu Wei, Ping Lu, Chenxi Zhu, Kunpeng Zhao, Xun Shi, Lidong Chen, Fangfang Xu. Nano-scale compositional oscillation and phase intergrowth in Cu2S0.5Se0.5 and their role in thermal transport [J]. J. Mater. Sci. Technol., 2021, 79(0): 222-229. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||