J. Mater. Sci. Technol. ›› 2021, Vol. 74: 27-34.DOI: 10.1016/j.jmst.2020.10.010
• Research Article • Previous Articles Next Articles
Hai-Le Yana,*(), Hao-Xuan Liua, Ying Zhaoa, Nan Jiab, Jing Baic, Bo Yanga, Zongbin Lia, Yudong Zhangd, Claude Eslingd, Xiang Zhaoa,*(
), Liang Zuoa
Received:
2020-07-01
Revised:
2020-08-29
Accepted:
2020-09-04
Published:
2021-05-30
Online:
2020-10-10
Contact:
Hai-Le Yan,Xiang Zhao
About author:
zhaox@mail.neu.edu.cn (X. Zhao).Hai-Le Yan, Hao-Xuan Liu, Ying Zhao, Nan Jia, Jing Bai, Bo Yang, Zongbin Li, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Impact of B alloying on ductility and phase transition in the Ni-Mn-based magnetic shape memory alloys: Insights from first-principles calculation[J]. J. Mater. Sci. Technol., 2021, 74: 27-34.
Fig. 1. Compressive fracture strain ε and fracture stress σ for the B-alloyed and the B-freed Ni-Mn-based alloys. Data are extracted from the literature as follows: a Ref. [12], b Ref. [13], c Ref. [18], d Ref. [14], e Ref. [15], f Ref. [16], and g Ref. [17].
Fig. 3. Illustrations of the Ni-BNi (a1), the Ni-BMn (a2) and the Ni-BGa (a3) structural models for the (Ni1.75B0.25)MnGa alloy. (b) Formation energies Ef of various occupation models for the (Ni1.75B0.25)MnGa, Ni2(Mn0.75B0.25)Ga, Ni2Mn(Ga0.75B0.25), (Ni2MnGa)0.94B0.06 alloys. Evolution Ef and C' for the Ni2-xBxMnGa alloys with the Ni-BNi occupation (c1), the Ni2Mn1-xBxGa alloys with the Mn-BMn occupation (c2), and the Ni2MnGa1-xBx alloys with the Ga-BGa occupation (c3) as a function of the B content.
Alloying systems | Concentration x | Ef (meV/atom) | C11 (GPa) | C12 (GPa) | C44 (GPa) | C' (GPa) | a0 (Å) | |
---|---|---|---|---|---|---|---|---|
(Ni2-xBx)MnGa | 0 | Our work | -295.0 | 163.6 | 155.4 | 106.7 | 4.1 | 5.8024 |
PAW [ | - | 163.0 | 152.0 | 107.0 | 5.5 | 5.8120 | ||
EMTO [ | - | 168.0 ± 0.47 | 152.2 ± 0.23 | 107.0 ± 0.69 | 7.9 ± 0.35 | 5.8208 | ||
PP [ | - | 153 ± 2 | 148 ± 2 | - | 2.5 ± 2 | - | ||
Exp. [ | - | 152.0 | 143.0 | 103.0 | 4.5 | - | ||
Exp. [ | - | 136 ± 3 | - | 102 ± 3 | 22 ± 2 | - | ||
0.25 | -150.5 | 169.8 | 165.4 | 98.9 | 2.2 | 5.7686 | ||
0.5 | -17.3 | 177.8 | 170.3 | 93.4 | 3.8 | 5.7247 | ||
0.75 | 145.4 | 152.2 | 157.7 | 68.7 | -2.8 | 5.6758 | ||
1 | 303.0 | 170.2 | 168.8 | 38.6 | 0.7 | 5.6218 | ||
Ni2(Mn1-xBx)Ga | 0 | -295.0 | 163.6 | 155.4 | 106.7 | 4.1 | 5.8024 | |
0.25 | -167.8 | 176.2 | 171.0 | 104.2 | 2.6 | 5.7360 | ||
0.5 | -62.0 | 198.7 | 186.8 | 98.1 | 5.9 | 5.6590 | ||
0.75 | 20.2 | 196.0 | 175.4 | 9.5 | 10.3 | 5.5731 | ||
1 | 70.4 | 215.6 | 190.2 | -65.7 | 12.2 | 5.4737 | ||
Ni2Mn(Ga1-xBx) | 0 | -295.0 | 163.6 | 155.4 | 106.7 | 4.1 | 5.8024 | |
0.25 | -145.1 | 171.1 | 156.0 | 85.3 | 7.5 | 5.7244 | ||
0.5 | -18.7 | 177.9 | 170.8 | 47.3 | 3.5 | 5.6373 | ||
0.75 | 79.3 | 173.1 | 193.5 | 12.0 | -10.2 | 5.5426 | ||
1 | 141.5 | 176.4 | 219.9 | -59.1 | -21.8 | 5.3908 | ||
(Ni2MnGa)1-xBx | 0 | -295.0 | 163.6 | 155.4 | 106.7 | 4.1 | 5.8024 | |
0.0078 | -198.3 | 257.9 | 89.6 | 119.3 | 84.1 | 5.8363 | ||
0.06 | -140.0 | 90.5 | 131.5 | 63.9 | -20.5 | 6.0234 |
Table 1 Formation energy, elastic constant Cij and equilibrium lattice parameter a0 of the Ni2-xBxMnGa (x = 0, 0.25, 0.5, 0.75 and 1), Ni2Mn1-xBxGa(x = 0.25, 0.5, 0.75 and 1), Ni2MnGa1-xBx (x = 0, 0.25, 0.5, 0.75 and 1) and (Ni2MnGa)1-xBx (x = 0, 0.0078 and 0.06) alloys.
Alloying systems | Concentration x | Ef (meV/atom) | C11 (GPa) | C12 (GPa) | C44 (GPa) | C' (GPa) | a0 (Å) | |
---|---|---|---|---|---|---|---|---|
(Ni2-xBx)MnGa | 0 | Our work | -295.0 | 163.6 | 155.4 | 106.7 | 4.1 | 5.8024 |
PAW [ | - | 163.0 | 152.0 | 107.0 | 5.5 | 5.8120 | ||
EMTO [ | - | 168.0 ± 0.47 | 152.2 ± 0.23 | 107.0 ± 0.69 | 7.9 ± 0.35 | 5.8208 | ||
PP [ | - | 153 ± 2 | 148 ± 2 | - | 2.5 ± 2 | - | ||
Exp. [ | - | 152.0 | 143.0 | 103.0 | 4.5 | - | ||
Exp. [ | - | 136 ± 3 | - | 102 ± 3 | 22 ± 2 | - | ||
0.25 | -150.5 | 169.8 | 165.4 | 98.9 | 2.2 | 5.7686 | ||
0.5 | -17.3 | 177.8 | 170.3 | 93.4 | 3.8 | 5.7247 | ||
0.75 | 145.4 | 152.2 | 157.7 | 68.7 | -2.8 | 5.6758 | ||
1 | 303.0 | 170.2 | 168.8 | 38.6 | 0.7 | 5.6218 | ||
Ni2(Mn1-xBx)Ga | 0 | -295.0 | 163.6 | 155.4 | 106.7 | 4.1 | 5.8024 | |
0.25 | -167.8 | 176.2 | 171.0 | 104.2 | 2.6 | 5.7360 | ||
0.5 | -62.0 | 198.7 | 186.8 | 98.1 | 5.9 | 5.6590 | ||
0.75 | 20.2 | 196.0 | 175.4 | 9.5 | 10.3 | 5.5731 | ||
1 | 70.4 | 215.6 | 190.2 | -65.7 | 12.2 | 5.4737 | ||
Ni2Mn(Ga1-xBx) | 0 | -295.0 | 163.6 | 155.4 | 106.7 | 4.1 | 5.8024 | |
0.25 | -145.1 | 171.1 | 156.0 | 85.3 | 7.5 | 5.7244 | ||
0.5 | -18.7 | 177.9 | 170.8 | 47.3 | 3.5 | 5.6373 | ||
0.75 | 79.3 | 173.1 | 193.5 | 12.0 | -10.2 | 5.5426 | ||
1 | 141.5 | 176.4 | 219.9 | -59.1 | -21.8 | 5.3908 | ||
(Ni2MnGa)1-xBx | 0 | -295.0 | 163.6 | 155.4 | 106.7 | 4.1 | 5.8024 | |
0.0078 | -198.3 | 257.9 | 89.6 | 119.3 | 84.1 | 5.8363 | ||
0.06 | -140.0 | 90.5 | 131.5 | 63.9 | -20.5 | 6.0234 |
Fig. 4. Ductile-brittle diagram (a), isotropic Young's modulus EH (b) and shear modulus GH (c) of (Ni2-xBx)MnGa (x = 0, 0.25 and 0.5), Ni2(Mn1-xBx)Ga (x = 0, 0.25 and 0.5), Ni2Mn(Ga1-xBx) (x = 0, 0.25 and 0.5) and (Ni2MnGa)1-xBx (x = 0 and 0.0078) alloys.
Fig. 5. ELF distributions on ($1\bar{1}0$) and |IpCOHP| values of Ni-Ga, Ni-B, Mn-Ga, Mn-B for the Ni2Mn(Ga0.75B0.25) (a1 and a2) and the (Ni2MnGa)0.94B0.06 (b1 and b2) alloys.
Fig. 6. Tetragonal ratio (c/a) dependence of the ground-state energy E(c/a) for the Ni2MnGa1-xBx (x = 0, 0.25 and 0.5) alloys. For clarity, the energy of the austenite (c/a = 1) for the different compositions are normalized to be zero. (b) Variations of energy difference between the austenite and the martensite ΔE and the c/a values of martensite with respect to the B content. Total and atom-resolved magnetic moments for the austenite (c1) and the martensite (c2).
Fig. 7. Density of states of the Ni2MnGa1-xBx (x = 0, 0.25 and 0.5) alloys for the austenite (a1) and the martensite (a2). (b) Enlarged minority-spin electron DOS near the Fermi energy EF.
[1] |
A. Sozinov, N. Lanska, A. Soroka, W. Zou, Appl. Phys. Lett. 102 (2) (2013), 021902.
DOI URL |
[2] |
H.-L. Yan, B. Yang, Y.D. Zhang, Z.B. Li, C. Esling, X. Zhao, L. Zuo, Acta Mater. 111 (2016) 75-84.
DOI URL |
[3] |
T. Gottschall, K.P. Skokov, B. Frincu, O. Gutfleisch, Appl. Phys. Lett. 106 (2) (2015), 021901.
DOI URL |
[4] |
B. Lu, F. Xiao, A. Yan, J. Liu, Appl. Phys. Lett. 105 (16) (2014), 161905.
DOI URL |
[5] |
X.-M. Huang, L.-D. Wang, H.-X. Liu, H.-L. Yan, N. Jia, B. Yang, Z. Li, Y. Zhang, C. Esling, X. Zhao, L. Zuo, Intermetallics 113 (2019) 106579.
DOI URL |
[6] |
X.-M. Huang, Y. Zhao, H.-L. Yan, N. Jia, S. Tang, J. Bai, B. Yang, Z. Li, Y. Zhang, C. Esling, X. Zhao, L. Zuo, Scripta Mater. 185 (2020) 94-99.
DOI URL |
[7] |
C. Bechtold, C. Chluba, R. Lima de Miranda, E. Quandt, Appl. Phys. Lett. 101 (9) (2012), 091903.
DOI URL |
[8] |
J. Cui, Y. Wu, J. Muehlbauer, Y. Hwang, R. Radermacher, S. Fackler, M. Wuttig, I. Takeuchi, Appl. Phys. Lett. 101 (7) (2012), 073904.
DOI URL |
[9] |
H. Ossmer, F. Lambrecht, M. Gueltig, C. Chluba, E. Quandt, M. Kohl, Acta Mater. 81 (2014) 9-20.
DOI URL |
[10] |
H. Chen, F. Xiao, X. Liang, Z.X. Li, Z. Li, X.J. Jin, T. Fukuda, Acta Mater. 177 (2019) 169-177.
DOI URL |
[11] |
M.M. Vopson, Solid State Commun. 152 (23) (2012) 2067-2070.
DOI URL |
[12] |
Y. Aydogdu, A.S. Turabi, M. Kok, A. Aydogdu, H. Tobe, H.E. Karaca, Appl. Phys. A 117 (4) (2014) 2073-2078.
DOI URL |
[13] |
X. Zhang, Q.S. Liu, X.S. Zeng, J.H. Sui, W. Cai, H.B. Wang, Y. Feng, Intermetallics 68 (2016) 113-117.
DOI URL |
[14] |
Z. Yang, D.Y. Cong, X.M. Sun, Z.H. Nie, Y.D. Wang, Acta Mater. 127 (2017) 33-42.
DOI URL |
[15] |
Y. Feng, H. Chen, F. Xiao, X.H. Bian, P. Wang, J. Alloy Compd. 765 (2018) 264-270.
DOI URL |
[16] |
Y. Aydogdu, A.S. Turabi, A. Aydogdu, M. Kok, Z.D. Yakinci, H.E. Karaca, J. Therm. Anal. Calorim. 126 (2) (2016) 399-406.
DOI URL |
[17] |
C. Tan, Z. Tai, K. Zhang, X. Tian, W. Cai, Sci. Rep. 7 (2017) 43387.
DOI URL |
[18] |
B. Tian, Y.L. Jiang, F. Chen, Y.X. Tong, L. Li, Y.F. Zheng, Mater. Sci. Eng. A 617 (0) (2014) 46-51.
DOI URL |
[19] |
H.-L. Yan, Y. Zhao, H.-X. Liu, M.-J. Zhang, H.-F. Zhang, J. Bai, N. Jia, B. Yang, Z.-B. Li, Y.-D. Zhang, C. Esling, X. Zhao, L. Zuo, J. Alloy Compd. 821 (2020), 153481.
DOI URL |
[20] |
H.-L. Yan, L.D. Wang, H.X. Liu, X.M. Huang, N. Jia, Z.B. Li, B. Yang, Y.D. Zhang, C. Esling, X. Zhao, L. Zuo, Mater. Des. 184 (2019), 108180.
DOI URL |
[21] |
Z. Yang, D.Y. Cong, Y. Yuan, Y. Wu, Z.H. Nie, R.G. Li, Y.D. Wang, Mater. Res. Lett. 7 (4) (2019) 137-144.
DOI |
[22] |
B.R. Gautam, I. Dubenko, A.K. Pathak, S. Stadler, N. Ali, J. Phys. Condens. Matter 20 (46) (2008), 465209.
DOI URL |
[23] |
Z. Chen, D.Y. Cong, Y. Zhang, X.M. Sun, R.G. Li, S.H. Li, Z. Yang, C. Song, Y.X. Cao, Y. Ren, Y.D. Wang, J. Mater. Sci. Technol. 45 (2020) 44-48.
DOI URL |
[24] |
H.-L. Yan, C. Zhang, Y. Zhang, X. Wang, C. Esling, X. Zhao, L. Zuo, J. Appl. Cryst. 49 (5) (2016) 1585-1592.
DOI URL |
[25] |
X.Z. Liang, J. Bai, J.L. Gu, H.L. Yan, Y.D. Zhang, C. Esling, X. Zhao, L. Zuo, J. Mater. Sci. Technol. 44 (2020) 31-41.
DOI URL |
[26] |
H.J. Zhang, C.H. Li, P. Djemia, R. Yang, Q.M. Hu, J. Mater. Sci. Technol. 45 (2020) 92-97.
DOI URL |
[27] |
C.M. Li, H.B. Luo, Q.M. Hu, R. Yang, B. Johansson, L. Vitos, Phys. Rev. B 82 (2) (2010), 024201.
DOI URL |
[28] |
K. Ullakko, J. Huang, C. Kantner, R. O’handley, V. Kokorin, Appl. Phys. Lett. 69 (13) (1996) 1966-1968.
DOI URL |
[29] | M. Born, K. Huang, Dynamical Theory of Crystal Lattices, Clarendon Press, Oxford, 1954, pp. 1-86. |
[30] |
J.K. Burdett, T.A. McCormick, J. Phys. Chem. A 102 (31) (1998) 6366-6372.
DOI URL |
[31] |
V.L. Deringer, A.L. Tchougreeff, R. Dronskowski, J. Phys. Chem. A 115 (21) (2011) 5461-5466.
DOI PMID |
[32] |
H.-L. Yan, H.-X. Liu, X.-M. Huang, M.-J. Zhang, N. Jia, J. Bai, B. Yang, Z. Li, Y. Zhang, C. Esling, X. Zhao, L. Zuo, J. Alloy Compd. 843 (2020), 156049.
DOI URL |
[33] |
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865-3869.
DOI URL |
[34] |
G. Kresse, J. Furthmüller, Phys. Rev. B 54 (1996) 11169-11186.
DOI URL |
[35] |
H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13 (12) (1976) 5188-5192.
DOI URL |
[36] |
P.E. Blöchl, O. Jepsen, O.K. Andersen, Phys. Rev. B 49 (23) (1994) 16223-16233.
DOI URL |
[37] |
S. Özdemir Kart, I. Karaman, Phys. Status Solidi A 205 (5) (2008) 1026-1035.
DOI URL |
[38] |
S. Maintz, V.L. Deringer, A.L. Tchougréeff, R. Dronskowski, J. Comput. Chem. 37 (11) (2016) 1030-1035.
DOI URL |
[39] |
H.-L. Yan, Y. Zhang, N. Xu, A. Senyshyn, H.-G. Brokmeier, C. Esling, X. Zhao, L. Zuo, Acta Mater. 88 (2015) 375-388.
DOI URL |
[40] |
P. Webster, K. Ziebeck, S. Town, M. Peak, Philos. Mag. B 49 (3) (1984) 295-310.
DOI URL |
[41] | G. Gottstein, Solid State Phase Transformations, Springer, Berlin, 2004, pp. 56-125. |
[42] |
E.J. Savino, A. Seeger, Scripta Metall. 15 (4) (1981) 431-435.
DOI URL |
[43] |
S. Özdemir Kart, T. Cagın, J. Alloy Compd. 508 (1) (2010) 177-183.
DOI URL |
[44] |
C. Bungaro, K.M. Rabe, A. Dal Corso, Phys. Rev. B 68 (13) (2003), 134104.
DOI URL |
[45] |
J. Worgull, E. Petti, J. Trivisonno, Phys. Rev. B 54 (22) (1996) 15695-15699.
DOI URL |
[46] |
L. Mañosa, A. Gonzalez-Comas, E. Obradó, A. Planes, V.A. Chernenko, V.V. Kokorin, E. Cesari, Phys. Rev. B 55 (17) (1997) 11068-11071.
DOI URL |
[47] | S.F. Pugh, Philos. Mag. 45 (367) (1954) 823-843. |
[48] | D.G. Pettifor, Bonding and Structure of Molecules and Solids, Oxford University Press, Oxford, 1995, pp. 50-276. |
[49] |
R. Hill, Proc. Phys. Soc. A 65 (5) (1952) 349-354.
DOI URL |
[50] |
S. Fujii, S. Ishida, S. Asano, J. Phys. Soc. Jpn. 58 (10) (1989) 3657-3665.
DOI URL |
[51] |
S.R. Barman, S. Banik, A. Chakrabarti, Phys. Rev. B 72 (18) (2005), 184410.
DOI URL |
[52] |
H. Niu, X.-Q. Chen, P. Liu, W. Xing, X. Cheng, D. Li, Y. Li, Sci. Rep. 2 (2012) 718.
DOI URL |
[53] |
R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto, O. Kitakami, K. Oikawa, A. Fujita, T. Kanomata, K. Ishida, Nature 439 (7079) (2006) 957-960.
PMID |
[54] | E.C. Bain, N.Y. Dunkirk, Trans. AIME 70 (1) (1924) 25-35. |
[55] | V.D. Buchelnikov, V.V. Sokolovskiy, M.A. Zagrebin, M.A. Tufatullina, P. Entel, J. Phys. D: Appl. Phys. 48 (16) (2015) 8. |
[56] |
A. Ayuela, J. Enkovaara, R.M. Nieminen, J. Phys. Condens. Matter 14 (21) (2002) 5325-5336.
DOI URL |
[57] |
F.Q. Li, Y.H. Qu, H.L. Yan, Z. Chen, D.Y. Cong, X.M. Sun, S.H. Li, Y.D. Wang, Appl. Phys. Lett. 113 (11) (2018), 112402.
DOI URL |
[58] |
Y. Sutou, Y. Imano, N. Koeda, T. Omori, R. Kainuma, K. Ishida, K. Oikawa, Appl. Phys. Lett. 85 (19) (2004) 4358-4360.
DOI URL |
[59] |
Y.H. Qu, D.Y. Cong, S.H. Li, W.Y. Gui, Z.H. Nie, M.H. Zhang, Y. Ren, Y.D. Wang, Acta Mater. 151 (2018) 41-55.
DOI URL |
[60] |
C. Tan, Z. Tai, K. Zhang, X. Tian, W. Cai, Sci. Rep. 7 (2017) 43387.
DOI URL |
[61] |
A.T. Zayak, W.A. Adeagbo, P. Entel, K.M. Rabe, Appl. Phys. Lett. 88 (11) (2006), 111903.
DOI URL |
[62] |
C. Jiang, G. Feng, S. Gong, H. Xu, Mater. Sci. Eng. A 342 (1) (2003) 231-235.
DOI URL |
[63] |
V.A. Chernenko, Scripta Mater. 40 (5) (1999) 523-527.
DOI URL |
[64] | H.-L. Yan, H.-X. Liu, Y.-D. Zhang, C. Esling, X. Zhao, L. Zuo, (Preparation). |
[65] |
H.E. Karaca, I. Karaman, B. Basaran, Y. Ren, Y.I. Chumlyakov, H.J. Maier, Adv. Funct. Mater. 19 (7) (2009) 983-998.
DOI URL |
[66] |
E. Şaşıoğlu, L.M. Sandratskii, P. Bruno, Phys. Rev. B 70 (2) (2004), 024427.
DOI URL |
[67] |
E. Şaşıoğlu, L.M. Sandratskii, P. Bruno, Phys. Rev. B 71 (21) (2005), 214412.
DOI URL |
[68] |
M. Siewert, M.E. Gruner, A. Hucht, H.C. Herper, A. Dannenberg, A. Chakrabarti, N. Singh, R. Arroyave, P. Entel, Adv. Eng. Mater. 14 (8) (2012) 530-546.
DOI URL |
[69] |
P. Entel, M.E. Gruner, M. Acet, A. Cakir, R. Arroyave, T. Duong, S. Sahoo, S. Fahler, V.V. Sokolovskiy, Energy Technol. 6 (8) (2018) 1478-1490.
DOI URL |
[1] | Lin Gao, Kai Li, Song Ni, Yong Du, Min Song. The growth mechanisms of θ′ precipitate phase in an Al-Cu alloy during aging treatment [J]. J. Mater. Sci. Technol., 2021, 61(0): 25-32. |
[2] | Yongliang Qi, Tinghui Cao, Hongxiang Zong, Yake Wu, Lin He, Xiangdong Ding, Feng Jiang, Shenbao Jin, Gang Sha, Jun Sun. Enhancement of strength-ductility balance of heavy Ti and Al alloyed FeCoNiCr high-entropy alloys via boron doping [J]. J. Mater. Sci. Technol., 2021, 75(0): 154-163. |
[3] | Ziqi Guan, Jing Bai, Jianglong Gu, Xinzeng Liang, Die Liu, Xinjun Jiang, Runkai Huang, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. First-principles investigation of B2 partial disordered structure, martensitic transformation, elastic and magnetic properties of all-d-metal Ni-Mn-Ti Heusler alloys [J]. J. Mater. Sci. Technol., 2021, 68(0): 103-111. |
[4] | Yu Han, Huabing Li, Hao Feng, Kemei Li, Yanzhong Tian, Zhouhua Jiang. Simultaneous enhancement in strength and ductility of Fe50Mn30Co10Cr10 high-entropy alloy via nitrogen alloying [J]. J. Mater. Sci. Technol., 2021, 65(0): 210-215. |
[5] | Yu Fu, Wenlong Xiao, Junshuai Wang, Lei Ren, Xinqing Zhao, Chaoli Ma. A novel strategy for developing α + β dual-phase titanium alloys with low Young’s modulus and high yield strength [J]. J. Mater. Sci. Technol., 2021, 76(0): 122-128. |
[6] | Jing Li, Mengjie Zhao, Li Jin, Fenghua Wang, Shuai Dong, Jie Dong. Simultaneously improving strength and ductility through laminate structure design in Mg-8.0Gd-3.0Y-0.5Zr alloys [J]. J. Mater. Sci. Technol., 2021, 71(0): 195-200. |
[7] | H.T. Jeong, W.J. Kim. Microstructure tailoring of Al0.5CoCrFeMnNi to achieve high strength and high uniform strain using severe plastic deformation and an annealing treatment [J]. J. Mater. Sci. Technol., 2021, 71(0): 228-240. |
[8] | Yong Hee Jo, Junha Yang, Won-Mi Choi, Kyung-Yeon Doh, Donghwa Lee, Hyoung Seop Kim, Byeong-Joo Lee, Seok Su Sohn, Sunghak Lee. Body-centered-cubic martensite and the role on room-temperature tensile properties in Si-added SiVCrMnFeCo high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 76(0): 222-230. |
[9] | Xiao-Yuan Wang, Yu-Fei Wang, Cheng Wang, Shun Xu, Jian Rong, Zhi-Zheng Yang, Jin-Guo Wang, Hui-Yuan Wang. A simultaneous improvement of both strength and ductility by Sn addition in as-extruded Mg-6Al-4Zn alloy [J]. J. Mater. Sci. Technol., 2020, 49(0): 117-125. |
[10] | Xiaoxiao Wei, Li Jin, Fenghua Wang, Jing Li, Nan Ye, Zhenyan Zhang, Jie Dong. High strength and ductility Mg-8Gd-3Y-0.5Zr alloy with bimodal structure and nano-precipitates [J]. J. Mater. Sci. Technol., 2020, 44(0): 19-23. |
[11] | Shijun Zhao. Defect properties in a VTaCrW equiatomic high entropy alloy (HEA) with the body centered cubic (bcc) structure [J]. J. Mater. Sci. Technol., 2020, 44(0): 133-139. |
[12] | T. Cai, K.Q. Li, Z.J. Zhang, P. Zhang, R. Liu, J.B. Yang, Z.F. Zhang. Predicting the variation of stacking fault energy for binary Cu alloys by first-principles calculations [J]. J. Mater. Sci. Technol., 2020, 53(0): 61-65. |
[13] | Zhen Chen, Daoyong Cong, Yin Zhang, Xiaoming Sun, Runguang Li, Shaohui Li, Zhi Yang, Chao Song, Yuxian Cao, Yang Ren, Yandong Wang. Intrinsic two-way shape memory effect in a Ni-Mn-Sn metamagnetic shape memory microwire [J]. J. Mater. Sci. Technol., 2020, 45(0): 44-48. |
[14] | Hao Jin, Qing Jia, Quangang Xian, Ronghua Liu, Yuyou Cui, Dongsheng Xu, Rui Yang. Seeded growth of Ti-46Al-8Nb polysynthetically twinned crystals with an ultra-high elongation [J]. J. Mater. Sci. Technol., 2020, 54(0): 190-195. |
[15] | Jinlong Wang, Jing Bai, Jianglong Gu, Haile Yan, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Investigation of martensitic transformation behavior in Ni-Mn-In Heusler alloy from a first-principles study [J]. J. Mater. Sci. Technol., 2020, 58(0): 100-106. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||