J. Mater. Sci. Technol. ›› 2021, Vol. 70: 59-66.DOI: 10.1016/j.jmst.2020.08.045
• Research Article • Previous Articles Next Articles
Xinrui Zhang, Xiaofang Liuc, Chunguang Yangb,*(), Tong Xib, Jinlong Zhaob, Lichu Liuc, Ke Yangb,*(
)
Received:
2020-06-03
Revised:
2020-07-02
Accepted:
2020-07-21
Published:
2021-04-20
Online:
2021-04-15
Contact:
Chunguang Yang,Ke Yang
About author:
kyang@imr.ac.cn (K. Yang).Xinrui Zhang, Xiaofang Liu, Chunguang Yang, Tong Xi, Jinlong Zhao, Lichu Liu, Ke Yang. New strategy to delay food spoilage: Application of new food contact material with antibacterial function[J]. J. Mater. Sci. Technol., 2021, 70: 59-66.
Fig. 1. (a) Sensory changes of chicken spread out on antibacterial 304-Cu SS and ordinary 304 SS sheets, respectively, red arrows indicating the areas where the mucus obviously overflowed; (b) changes of total bacterial count of chicken spread out on antibacterial 304-Cu SS and ordinary 304 SS sheets.
Incubation time (day) | Indicators | |||
---|---|---|---|---|
Electrical conductivity (μS cm-1) | TVB-N (mg 100 g-1) | |||
304-Cu SS | 304 SS | 304-Cu SS | 304 SS | |
0 | 867.6 ± 6.80 | 867.6 ± 6.80 | 13.22 ± 0.43 | 13.22 ± 0.43 |
1 | 947.6 ± 19.19 | 1090.4 ± 3.62 | 13.87 ± 0.11 | 14.76 ± 0.22 |
2 | 1354.2 ± 21.34 | 1567.2 ± 36.94 | 14.17 ± 0.26 | 16.31 ± 0.57 |
3 | 1457.3 ± 15.84 | 1771.8 ± 27.54 | 17.64 ± 0.71 | 21.49 ± 2.12 |
4 | 1608.9 ± 13.85 | 1990.6 ± 16.11 | 20.33 ± 0.68 | 30.48 ± 0.97 |
5 | 2148.0 ± 16.43 | 3312.0 ± 14.83 | 25.49 ± 1.48 | 42.66 ± 1.32 |
Table 1 Changes in electrical conductivity and TVB-N of chicken spread out on antibacterial 304-Cu SS and ordinary 304 SS sheets.
Incubation time (day) | Indicators | |||
---|---|---|---|---|
Electrical conductivity (μS cm-1) | TVB-N (mg 100 g-1) | |||
304-Cu SS | 304 SS | 304-Cu SS | 304 SS | |
0 | 867.6 ± 6.80 | 867.6 ± 6.80 | 13.22 ± 0.43 | 13.22 ± 0.43 |
1 | 947.6 ± 19.19 | 1090.4 ± 3.62 | 13.87 ± 0.11 | 14.76 ± 0.22 |
2 | 1354.2 ± 21.34 | 1567.2 ± 36.94 | 14.17 ± 0.26 | 16.31 ± 0.57 |
3 | 1457.3 ± 15.84 | 1771.8 ± 27.54 | 17.64 ± 0.71 | 21.49 ± 2.12 |
4 | 1608.9 ± 13.85 | 1990.6 ± 16.11 | 20.33 ± 0.68 | 30.48 ± 0.97 |
5 | 2148.0 ± 16.43 | 3312.0 ± 14.83 | 25.49 ± 1.48 | 42.66 ± 1.32 |
Fig. 3. Sensory changes of bean curds placed on antibacterial 304-Cu SS and ordinary 304 SS sheets, respectively, red circles marking the mature bacterial colonies on surfaces of the bean curd, and red arrows indicating the areas where the bacterial plaques grew.
Fig. 4. (a) Biomass attached to the surfaces of antibacterial 304-Cu SS and ordinary 304 SS, and the corresponding AI-2 signal expression levels. All data represent the mean ± standard deviation of three independent experiments. *indicates significant difference between 304-Cu SS and 304 SS. (b) Changes in AI-2 signal activity under different treatments. All data represent the mean ± standard deviation of three independent experiments. *is in comparison with blank control group + H2O2, # is in comparison with 304 SS group + H2O2 (one sample: p< 0.05, two samples: p< 0.01, three samples: p< 0.001).
[1] |
J.L. Arques, E. Rodriguez, M. Nunez, M. Medina, Eur. Food Res. Technol., 227(2008), pp. 77-82.
DOI URL |
[2] | S. Boqvist, K. Söderqvist, I.Vãgsholm, Acta Vet. Scand., 60(2018), pp. 1-13. |
[3] |
E. Carrasco, A. Morales-Rueda, R.M. García-Gimeno, Food Res. Int., 45(2012), pp. 545-556.
DOI URL |
[4] | C.F. Pui, W.C. Wong, L.C. Chai, E. Nillian, F.M. Ghazali, Y.K. Cheah, Y. Nakaguchi, M. Nishibuchi, S. Radu, Int. Food Res. J., 18(2011), pp. 465-473. |
[5] |
J. Tian, X. Zeng, Z. Feng, X. Miao, Y. Wang, Ind. Crop Prod., 60(2014), pp. 151-159.
DOI URL |
[6] |
M.E. Fleming-Jones, R.E. Smith, J. Agric. Food Chem., 51(2003), pp. 8120-8127.
DOI URL |
[7] | G.Q. Shang, M. Zhao, W.Y. Wang, J. Food Saf ., 8(2014), pp. 2602-2608. |
[8] |
F.M. Mulimbayan, M.G. Mena, Appl. Mech. Mater., 835(2016), pp. 131-135.
DOI URL |
[9] | X.Y. Zhang, X.B. Huang, L. Jiang, Y. Ma, A.L. Fan, B. Tang, J. Iron Steel Res. Int., 9(2012), pp. 75-79. |
[10] | A.T. Samir, A. Dalal, B.D. Hatton, ACS Appl. Mater. Interfaces, 10(2018), pp. 22901-22912. |
[11] | F.M.N. Bellon, O. Cerf, Cheminform, 31(1991), pp. 1314-1317. |
[12] | B. Carpentier, O. Cerf, J. Appl. Bacteriol., 75(1993), pp. 499-511. |
[13] |
S. Burt, Int. J. Food Microbiol., 94(2004), pp. 223-253.
DOI URL |
[14] |
P.E. Simitzis, S.G. Deligeorgis, J.A. Bizelis, A. Dardamani, I. Theodosiou, K. Fegeros, Meat Sci., 79(2008), pp. 217-223.
DOI URL |
[15] |
R. Liu, K. Memarzadeh, B. Chang, Y.M. Zhang, Z. Ma, R.P. Allaker, L. Ren, K. Yang, Sci. Rep., 6(2016), p. 29985.
DOI URL |
[16] |
A. Thneibat, M. Fontana, M.A. Cochran, C. Gonzalez-Cabezas, Oper. Dent., 33(2008), pp. 142-148.
DOI URL |
[17] |
B. Jia, Y. Mei, L. Cheng, J. Zhou, L. Zhang, ACS Appl. Mater. Interfaces, 4(2012), pp. 2897-2902.
DOI URL |
[18] |
T.M. Gross, J. Lahiri, A. Golas, Nat. Commun., 10(2019), pp. 1979-1986.
DOI URL |
[19] |
D. Mitra, E.T. Kang, K.G. Neoh, ACS Appl. Mater. Interfaces, 12(2019), pp. 21159-21182
DOI URL |
[20] | G. Borkow, J. Gabbay, Curr. Chem. Biol., 3(2009), pp. 272-278. |
[21] |
R. Liu, Y. Tang, H. Liu, L. Zeng, Z. Ma, J. Li, Y. Zhao, L. Ren, K. Yang, J. Mater. Sci. Technol., 47(2020), pp. 202-215.
DOI URL |
[22] |
X.R. Zhang, J.L. Zhao, T. Xi, M.B. Shahzad, C.G. Yang, K. Yang, J. Mater. Sci. Technol., 34(2018), pp. 2149-2159.
DOI URL |
[23] |
J. Zhao, L. Ren, B.C. Zhang, Z.Q. Cao, K. Yang, J. Mater. Sci. Technol., 33(2017), pp. 1604-1609.
DOI URL |
[24] |
L. Nan, Y. Liu, M.Q. Lü, K. Yang, J. Mater. Sci. Mater. Med., 19(2008), pp. 3057-3062.
DOI URL |
[25] | M. Li, L. Nan, D. Xu, G. Ren, K. Yang, J. Mater. Sci. Technol., 31(2015), pp. 243-251. |
[26] |
D. Sun, D.K. Xu, C.G. Yang, M.B. Shahzad, Z.Q. Sun, J. Xia, J.L. Zhao, T.Y. Gu, K. Yang, G.X. Wang, Sci. Rep., 6(2016), pp. 29244-29256.
DOI URL |
[27] | National Health and Family Planning Commission of the People’s Republic of China, GB/T 5009.228, National Food Safety Standard: Determination of Volatile Basic Nitrogen in Food, 2016. |
[28] |
C. Ning, X. Wang, L. Li, Y. Zhu, M. Li, P. Yu, L. Zhou, Z. Zhou, J. Chen, G. Tan, Y. Zhang, Y. Wang, C. Mao, Chem. Res. Toxicol., 28(2015), pp. 1815-1822.
DOI URL |
[29] | National Health and Family Planning Commission of the People’s Republic of China, GB/T 5009.239, National Food Safety Standard: Determination of Acidity in Food, 2016. |
[30] | L.N. Dovigo, A.C. Pavarina, J.C. Carmello, A.L. Machado, V.S. Bagnato, Lasers Surg.Med., 43(2011), pp. 927-934. |
[31] |
Y. Gu, B. Li, J. Tian, Y. He, Ann. Microbiol., 68(2018), pp. 287-294.
DOI URL |
[32] |
D. Ren, L.A. Bedzyk, R.W. Ye, S.M. Thomas, T.K. Wood, Appl. Environ. Microbiol., 70(2004), pp. 2038-2043.
DOI URL |
[33] | Arlington, VA: ANSI/AAMI, ISO 10993-12, Biological Evaluation of Medical Devices Part 12: Sample Preparation and Reference Materials, 2012. |
[34] |
A. Small, B. Wells-Burr, S. Buncic, Meat Sci., 69(2005), pp. 263-268.
DOI URL |
[35] |
J.M. Jay, J.P. Vilai, M.E. Hughes, Int. J. Food Microbiol., 81(2003), pp. 105-111.
DOI URL |
[36] |
R.A. Edwards, R.H. Dainty, C.M. Hibbard, J. Appl. Bacteriol., 58(1985), pp. 13-19.
DOI URL |
[37] |
D. Qu, X. Zhou, F. Yang, S. Tian, X. Zhang, L. Ma, J.Z. Han, Meat Sci., 128(2017), pp. 24-29.
DOI URL |
[38] | National Health and Family Planning Commission of the People’s Republic of China, China Food and Drug Administration, GB/T 2707, National Food Safety Standard: Fresh(Frozen) Livestock and Poultry Products, 2016. |
[39] |
S.D. Senter, J.W. Arnold, V. Chew, J. Sci. Food Agric., 80(2000), pp. 1559-1564.
DOI URL |
[40] |
X.R. Zhang, C.G. Yang, K. Yang, ACS Appl. Mater. Interfaces, 12(2020), pp. 361-372.
DOI URL |
[41] |
R. Ehsan, R.A. Ali, I. Amin, H. Saman, D. Ali, Corros. Sci., 140(2018), pp. 30-39.
DOI URL |
[42] | C.V. Ballmoos, J. Bioenerg. Biomebr., 39(2007), pp. 441-445. |
[43] |
X.X. Xu, F.L. Nie, Y.B. Wang, J.X. Zhang, W. Zhang, L. Li, Y.F. Zheng, Acta Biomater., 8(2012), pp. 886-896.
DOI URL |
[44] |
J.A. Lemire, J.J. Harrison, R.J. Turner, Nat. Rev. Microbiol., 11(2013), pp. 371-384.
DOI URL |
[45] |
M. Li, Z. Ma, Y. Zhu, H. Xia, M. Yao, X. Chu, X. Wang, K. Yang, M. Yang, Y. Zhang, C. Mao, Adv. Healthcare Mater., 5(2016), pp. 557-566.
DOI URL |
[46] |
E.R. Stadtman, Science, 257(1992), pp. 1220-1224.
DOI URL |
[47] |
S. Warnes, V. Caves, C. Keevil, Environ. Microbiol., 14(2012), pp. 1730-1743.
DOI URL |
[48] | C.E. Santo, E.W. Lam, C.G. Elowsky, D. Quaranta, D.W. Domaille, C.J. Chang, G. Grass. Appl. Environ. Microbiol., 77(2011), pp. 794-802. |
[49] |
S.L. Warnes, S.M. Green, H.Y. Michels, C. Keevil, Appl. Environ. Microbiol., 76(2010), pp. 5390-5401.
DOI URL |
[50] |
L. Gram, L. Ravn, M. Rasch, J.B. Bruhn, A.B. Christensen, M. Givskov, Int. J. Food Microbiol., 78(2002), pp. 79-97.
DOI URL |
[51] |
L. Gram, A.B. Christensen, L. Ravn, S. Molin, M. Givskov, Appl. Environ. Microbiol., 65(1999), pp. 3458-3463.
DOI URL |
[52] |
X. Wang, X. Li, J. Ling, J. Basic Microbiol., 57(2017), pp. 605-616.
DOI URL |
[53] | J.B. Bruhn, A.B. Christensen, L.R. Flodgaard, K.F. Nielsen, T.O. Larsen, M. Givskov, L. Gram Appl. Environ. Microbiol., 70(2004), pp. 4293-4302. |
[54] |
W.L. Ng, B.L. Bassler, Annu. Rev. Genet., 43(2009), pp. 197-222.
DOI URL |
[55] |
B.L. Bassler, E.P. Greenberg, A.M. Stevens, J. Bacteriol., 179(1997), pp. 4043-4045.
DOI URL |
[56] |
J.S. Dickschat, Nat. Prod. Rep., 27(2010), pp. 343-369.
DOI URL |
[57] |
Y.H. An, R.J. Friedman, J. Biomed. Mater. Res. B, 43(1998), pp. 338-348.
DOI URL |
[58] |
J.A. Markova, E.V. Anganova, A.L. Turskaya, V.A. Bybin, E.D. Savilov, Appl. Biochem. Microbiol., 54(2018), pp. 1-11.
DOI URL |
[59] |
X. Xiao, W.W. Zhu, Q.Y. Liu, H. Yuan, W.W. Li, L.J. Wu, Q. Li, H.Q. Yu, Environ. Sci. Technol., 50(2016), pp. 11895-11902.
DOI URL |
[60] | “Regulations and Guidelines of EU Food Contact Materials” Compilation Group, Regulations and Guidelines of EU Food Contact Materials, China Light Industry, Beijing, 2009. |
[61] | Ministry of Health of the People’s Republic of China, GB 9684, National Food Safety Standard: Stainless Steel Products, 2011. |
[62] | Council of Europe’s Policy Statements Concerning Materials and Articles Intended to Come Into Contact With Foodstuffs-policy Statement Concerning Metals and Alloys-technical Document Guidelines on Metals and Alloys Used As Food Contact Materials, 2020, . |
[63] |
P. Trumbo, A.A. Yates, S. Schlicker, M. Poos, J. Am. Diet. Assoc., 101(2001), pp. 294-301.
DOI URL |
[1] | Mengyang Wang, Shichao Bi, Jianhui Pang, Zhongzheng Zhou, Di Qin, Honglei Wang, Xiaojie Cheng, Xiguang Chen. Precise quantification of the antibacterial activity of chitosan by NB medium neutralizer [J]. J. Mater. Sci. Technol., 2021, 70(0): 224-232. |
[2] | Yi Zou, Yanxia Zhang, Qian Yu, Hong Chen. Dual-function antibacterial surfaces to resist and kill bacteria: Painting a picture with two brushes simultaneously [J]. J. Mater. Sci. Technol., 2021, 70(0): 24-38. |
[3] | Qian Wu, Xiangmei Liu, Bo Li, Lei Tan, Yong Han, Zhaoyang Li, Yanqin Liang, Zhenduo Cui, Shengli Zhu, Shuilin Wu, Yufeng Zheng. Eco-friendly and degradable red phosphorus nanoparticles for rapid microbial sterilization under visible light [J]. J. Mater. Sci. Technol., 2021, 67(0): 70-79. |
[4] | Run Huang, Lei Liu, Bo Li, Liang Qin, Lei Huang, Kelvin W.K. Yeung, Yong Han. Nanograins on Ti-25Nb-3Mo-2Sn-3Zr alloy facilitate fabricating biological surface through dual-ion implantation to concurrently modulate the osteogenic functions of mesenchymal stem cells and kill bacteria [J]. J. Mater. Sci. Technol., 2021, 73(0): 31-44. |
[5] | Mingjun Li, Li Nan, Chunyong Liang, Ziqing Sun, Lei Yang, Ke Yang. Antibacterial behavior and related mechanisms of martensitic Cu-bearing stainless steel evaluated by a mixed infection model of Escherichia coli and Staphylococcus aureus in vitro [J]. J. Mater. Sci. Technol., 2021, 62(0): 139-147. |
[6] | Jiajun Qiu, Lu Liu, Shi Qian, Wenhao Qian, Xuanyong Liu. Why does nitrogen-doped graphene oxide lose the antibacterial activity? [J]. J. Mater. Sci. Technol., 2021, 62(0): 44-51. |
[7] | Donglin Han, Yuan Li, Xiangmei Liu, Kelvin Wai Kwok Yeung, Yufeng Zheng, Zhenduo Cui, Yanqin Liang, Zhaoyang Li, Shengli Zhu, Xianbao Wang, Shuilin Wu. Photothermy-strengthened photocatalytic activity of polydopamine-modified metal-organic frameworks for rapid therapy of bacteria-infected wounds [J]. J. Mater. Sci. Technol., 2021, 62(0): 83-95. |
[8] | Li Liu, Wan Peng, Xiao Zhang, Jiangmei Peng, Pingsheng Liu, Jian Shen. Rational design of phosphonate/quaternary amine block polymer as an high-efficiency antibacterial coating for metallic substrates [J]. J. Mater. Sci. Technol., 2021, 62(0): 96-106. |
[9] | Mi Wu, Wen Liu, Jinrong Yao, Zhengzhong Shao, Xin Chen. Silk microfibrous mats with long-lasting antimicrobial function [J]. J. Mater. Sci. Technol., 2021, 63(0): 203-209. |
[10] | Yuxuan Mao, Peng Li, Jiewei Yin, Yanjie Bai, Huan Zhou, Xiao Lin, Huilin Yang, Lei Yang. Starch-based adhesive hydrogel with gel-point viscoelastic behavior and its application in wound sealing and hemostasis [J]. J. Mater. Sci. Technol., 2021, 63(0): 228-235. |
[11] | Mingjun Li, Christoph Schlaich, Jianguang Zhang, Ievgen S. Donskyi, Karin Schwibbert, Frank Schreiber, Yi Xia, Jörg Radnik, Tanja Schwerdtle, Rainer Haag. Mussel-inspired multifunctional coating for bacterial infection prevention and osteogenic induction [J]. J. Mater. Sci. Technol., 2021, 68(0): 160-171. |
[12] | Hui Liu, Rui Liu, Ihsan Ullah, Shuyuan Zhang, Ziqing Sun, Ling Ren, Ke Yang. Rough surface of copper-bearing titanium alloy with multifunctions of osteogenic ability and antibacterial activity [J]. J. Mater. Sci. Technol., 2020, 48(0): 130-139. |
[13] | Yongren Wu, Shun Chen, Yang Liu, Zhiwei Lu, Shaokun Song, Yang Zhang, Chuanxi Xiong, Lijie Dong. One-step preparation of porous aminated-silica nanoparticles and their antibacterial drug delivery applications [J]. J. Mater. Sci. Technol., 2020, 50(0): 139-146. |
[14] | Chengzhi Dai, Min Zhou, Weinan Jiang, Ximian Xiao, Jingcheng Zou, Yuxin Qian, Zihao Cong, Zhemin Ji, Longqiang Liu, Jiayang Xie, Zhongqian Qiao, Runhui Liu. Breaking or following the membrane-targeting mechanism: Exploring the antibacterial mechanism of host defense peptide mimicking poly(2-oxazoline)s [J]. J. Mater. Sci. Technol., 2020, 59(0): 220-226. |
[15] | Wang Guo, Wei Liu, Li Xu, Pei Feng, Yanru Zhang, Wenjing Yang, Cijun Shuai. Halloysite nanotubes loaded with nano silver for the sustained-release of antibacterial polymer nanocomposite scaffolds [J]. J. Mater. Sci. Technol., 2020, 46(0): 237-247. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||