J. Mater. Sci. Technol. ›› 2021, Vol. 72: 122-131.DOI: 10.1016/j.jmst.2020.07.037
• Research Article • Previous Articles Next Articles
Nagaraj Murugana, Rajendran Jeromea, Murugan Preethikaa, Anandhakumar Sundaramurthyb, Ashok K. Sundramoorthya,*()
Received:
2020-03-29
Revised:
2020-06-17
Accepted:
2020-07-13
Published:
2021-05-10
Online:
2021-05-10
Contact:
Ashok K. Sundramoorthy
About author:
* E-mail address: ashokkus@srmist.edu.in (A.K. Sundramoorthy).1 These authors contributed equally to this work.
Nagaraj Murugan, Rajendran Jerome, Murugan Preethika, Anandhakumar Sundaramurthy, Ashok K. Sundramoorthy. 2D-titanium carbide (MXene) based selective electrochemical sensor for simultaneous detection of ascorbic acid, dopamine and uric acid[J]. J. Mater. Sci. Technol., 2021, 72: 122-131.
Fig. 2. (A, B) TEM images of the Ti-C-Tx nanosheets with different magnifications, (C) HR-TEM images of Ti-C-Tx layers and (D) SAED pattern of Ti-C-Tx layers.
Fig. 4. Cyclic voltammograms (CVs) recorded using a bare GCE (red), and Ti-C-Tx/GCE (black) in (A) 1 mM AA, (B) 1 mM DA, (C) 1 mM UA and (D) mixture of 1 mM of (AA, DA and UA) + 0.1 M PBS (pH 7.4).
Fig. 6. The CVs of Ti-C-Tx/GCE electrode recorded in (A) 1 mM AA, (B) 1 mM DA, (C) 1 mM UA at different scan rates in the range from 10 to 150 mV s-1, respectively. (D-F) The linear plots of AA, DA and UA obtained from their oxidation peak current vs. square-root of the scan rates.
Fig. 7. (A, B, C) DPVs recorded for different individual concentrations of AA, DA and UA at the Ti-C-Tx/GCE in 0.1 M PBS (pH 7.4) upon successive additions of different concentrations from 100 to 1000 μM for AA, 5 to 50 μM for DA and 100 to 1500 μM for UA, respectively. (D, E, F) The calibration curves made for AA, DA and UA using their concentrations vs. oxidation peak currents.
Fig. 8. (A) DPVs recorded for different concentrations of DA and UA at the Ti-C-Tx/GCE in 0.1 M PBS (pH 7.4) with successive additions from 0.5 to 4 μM for DA and 0.5 to 4 μM for UA, respectively. (B, C) The calibration curves made from the oxidation peaks currents against concentration of DA and UA, respectively.
Fig. 9. (A) DPVs recorded for different concentrations of AA, DA and UA at the Ti-C-Tx/GCE in 0.1 M PBS (pH 7.4) upon successive additions from 100 to 600 μM for AA, 0.5 to 3 μM for DA and 0.5 to 3 μM for UA, respectively. (B-D) The calibration curves made for AA, DA and UA from their oxidation peak currents vs. concentrations.
Electrode materials | Linear range (μM) | Limit of detection (LOD) (μM) | Refs. | ||||
---|---|---|---|---|---|---|---|
AA | DA | UA | AA | DA | UA | ||
AC/GCE | 30-95 | 1-65 | 2-230 | 4.96 | 0.06 | 0.75 | [ |
Fe3O4/Co3O4/mC@g-C3N4/GCE | 500-8000 | 1-70 | 5-100 | 12.55 | 0.21 | 0.18 | [ |
HNP-PtTi | 200-1000 | 4-500 | 100-1000 | 24.2 | 3.2 | 5.3 | [ |
GO/MWNT | 5.0-300 | 5.0-500 | 3.0-60 | 1.0 | 1.5 | 1.0 | [ |
MWCNT-PEDOT/GCE | 100-2000 | 10-330 | 10-250 | 100 | 10 | 10 | [ |
PEDOT-modified Ni/Si MCP | 20-1400 | 12-48 | 36-216 | 10 | 1.5 | 2.7 | [ |
PG/GCE | 9-2314 | 5-710 | 6-1330 | 6.45 | 2.00 | 4.82 | [ |
CILE | 50-7400 | 2-1500 | 2-220 | 20 | 1.00 | 1.00 | [ |
ERGO/GCE | 500-2000 | 0.5-60 | 0.5-60 | 250 | 0.5 | 0.5 | [ |
Ti-C-Tx/GCE | 100-1000 | 0.5 - 50 | 0.5 - 4; 100 - 1500 | 4.64 | 0.06 | 0.075 | This work |
Table 1 Analytical data comparison between proposed method and other reported sensors for electrochemical simultaneous detection of AA, DA and UA.
Electrode materials | Linear range (μM) | Limit of detection (LOD) (μM) | Refs. | ||||
---|---|---|---|---|---|---|---|
AA | DA | UA | AA | DA | UA | ||
AC/GCE | 30-95 | 1-65 | 2-230 | 4.96 | 0.06 | 0.75 | [ |
Fe3O4/Co3O4/mC@g-C3N4/GCE | 500-8000 | 1-70 | 5-100 | 12.55 | 0.21 | 0.18 | [ |
HNP-PtTi | 200-1000 | 4-500 | 100-1000 | 24.2 | 3.2 | 5.3 | [ |
GO/MWNT | 5.0-300 | 5.0-500 | 3.0-60 | 1.0 | 1.5 | 1.0 | [ |
MWCNT-PEDOT/GCE | 100-2000 | 10-330 | 10-250 | 100 | 10 | 10 | [ |
PEDOT-modified Ni/Si MCP | 20-1400 | 12-48 | 36-216 | 10 | 1.5 | 2.7 | [ |
PG/GCE | 9-2314 | 5-710 | 6-1330 | 6.45 | 2.00 | 4.82 | [ |
CILE | 50-7400 | 2-1500 | 2-220 | 20 | 1.00 | 1.00 | [ |
ERGO/GCE | 500-2000 | 0.5-60 | 0.5-60 | 250 | 0.5 | 0.5 | [ |
Ti-C-Tx/GCE | 100-1000 | 0.5 - 50 | 0.5 - 4; 100 - 1500 | 4.64 | 0.06 | 0.075 | This work |
Sample | Analyte | Concentration added (μM) | Found (μM)a | Recovery (%) |
---|---|---|---|---|
Urine | AA | 100 | 102 ± 1.1 | 101 |
DA | 20 | 20.1 ± 0.6 | 100.5 | |
UA | 100 | 103 ± 1.3 | 103 |
Table 2 DPV analysis of spiked AA, DA and UA in diluted human urine samples using Ti-C-Tx modified GCE as a sensor (n = 3).
Sample | Analyte | Concentration added (μM) | Found (μM)a | Recovery (%) |
---|---|---|---|---|
Urine | AA | 100 | 102 ± 1.1 | 101 |
DA | 20 | 20.1 ± 0.6 | 100.5 | |
UA | 100 | 103 ± 1.3 | 103 |
Fig. 10. (A) Histogram represents peak currents obtained from DPV using three different Ti-C-Tx modified electrodes at fixed concentrations of AA, DA and UA (each 1 mM) in PBS. (B) CVs of Ti-C-Tx/GCE in 0.1 M PBS (pH 7.4) containing AA, DA and UA (1 mM) after several days of storage. (C) DPV responses were recorded using of Ti-C-Tx/GCE in 0.1 M PBS containing AA (300 μM), DA (1.5 μM), UA (1.5 μM) with the presence of 10 fold concentrated interferent molecules. (D) Histogram representing the variation of peak current responses with the addition of interferent molecules such as (b) urea (c) nicotine, (d) l-cysteine, (e) paracetamol, (f) Cd2+ and (g) Pb2+ in the presence of (a) AA, DA and UA.
[1] |
M. Soleymaniha, M. Shahbazi, A.R. Rafieerad, A. Maleki, A. Amiri, Adv. Health. Mater. 8 (2019), 1801137.
DOI URL |
[2] |
J. Ji, J. Wen, Y. Shen, Y. Lv, Y. Chen, S. Liu, H. Ma, Y. Zhang, J. Am. Chem. Soc. 139 (2017) 11698-11701.
DOI URL |
[3] |
C. Tan, X. Cao, X.J. Wu, Q. He, J. Yang, X. Zhang, J. Chen, W. Zhao, S. Han, G.H. Nam, Chem. Rev. 117 (2017) 6225-6331.
DOI URL |
[4] |
J. Zhu, E. Ha, G. Zhao, Y. Zhou, D. Huang, G. Yue, L. Hu, N. Sun, Y. Wang, L.Y.S. Lee, Coord. Chem. Rev. 352 (2017) 306-327.
DOI URL |
[5] |
L. Wang, P. Hu, Y. Long, Z. Liu, X. He, J. Mater. Chem. A 5 (2017) 22855-22876.
DOI URL |
[6] |
T. Xue, W. Liang, Y. Li, Y. Sun, Y. Xiang, Y. Zhang, Z. Dai, Y. Duo, L. Wu, K. Qi, B.N. Shivananju, L. Zhang, X. Cui, H. Zhang, Q. Bao, Nat. Commun. 10 (2019) 28.
DOI URL |
[7] |
Y. Zhang, B. Lin, S.C. Tjin, H. Zhang, G. Wang, P. Shum, X. Zhang, Opt. Express 18 (2010) 26345-26350.
DOI PMID |
[8] |
S. Yang, Y. Liu, W. Chen, W. Jin, J. Zhou, H. Zhang, G.S. Zakharova, Sens. Actuators B: Chem. 226 (2016) 478-485.
DOI URL |
[9] |
S. Bai, C. Sun, H. Yan, X. Sun, H. Zhang, L. Luo, X. Lei, P. Wan, X. Chen, Small 11 (2015) 5807-5813.
DOI URL |
[10] | J.C. Lei, X. Zhang, Z. Zhou, Front. Phys. 10 (2015) 276-286. |
[11] |
L. Ding, Y. Wei, Y. Wang, H. Chen, J. Caro, H. Wang, Angew. Chemie Int. Ed. 56 (2017) 1825-1829.
DOI URL |
[12] |
C. Zhang, Y. Ma, X. Zhang, S. Abdolhosseinzadeh, H. Sheng, W. Lan, A. Pakdel, J. Heier, F. Nüesch, Energy Environ. Mater. 3 (2020) 29-55.
DOI URL |
[13] |
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M.W. Barsoum, Adv. Mater. 23 (2011) 4248-4253.
DOI URL |
[14] |
G. Liu, J. Shen, Q. Liu, G. Liu, J. Xiong, J. Yang, W. Jin, J. Memb. Sci. 548 (2018) 548-558.
DOI URL |
[15] | J. Wang, G. Li, L. Li, Beijing, 2016, pp. 1-20. |
[16] |
C. Xu, L. Wang, Z. Liu, L. Chen, J. Guo, N. Kang, X.L. Ma, H.M. Cheng, W. Ren, Nat. Mater. 14 (2015) 1135-1141.
DOI URL |
[17] |
M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark, S. Sin, Y. Gogotsi, Chem. Mater. 29 (2017) 7633-7644.
DOI URL |
[18] |
M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, Adv. Mater. 26 (2014) 992-1005.
DOI URL |
[19] |
M. Khazaei, M. Arai, T. Sasaki, C. Chung, N.S. Venkataramanan, M. Estili, Y. Sakka, Y. Kawazoe, Adv. Funct. Mater. 23 (2013) 2185-2192.
DOI URL |
[20] | O. Mashtalir, M. Naguib, V.N. Mochalin, Y. Dall’Agnese, M. Heon, M.W. Barsoum, Y. Gogotsi, Nat. Commun. 4 (2013) 1-7. |
[21] |
M. Naguib, R.R. Unocic, B.L. Armstrong, J. Nanda, Dalton Trans. 44 (2015) 9353-9358.
DOI URL |
[22] |
K. Huang, Z. Li, J. Lin, G. Han, P. Huang, Chem. Soc. Rev. 47 (2018) 6889.
DOI PMID |
[23] |
H. Wang, Y. Wu, J. Zhang, G. Li, H. Huang, X. Zhang, Q. Jiang, Mater. Lett. 160 (2015) 537-540.
DOI URL |
[24] |
J. Halim, S. Kota, M.R. Lukatskaya, M. Naguib, M. Zhao, E.J. Moon, J. Pitock, J. Nanda, S.J. May, Y. Gogotsi, Adv. Funct. Mater. 26 (2016) 3118-3127.
DOI URL |
[25] |
F. Zhao, Y. Yao, C. Jiang, Y. Shao, D. Barceló, Y. Ying, J. Ping, J. Hazard. Mater. 384 (2020), 121358.
DOI URL |
[26] |
Y. Zhang, X. Jiang, J. Zhang, H. Zhang, Y. Li, Biosens. Bioelectron. 130 (2019) 315-321.
DOI PMID |
[27] |
J. Liu, X. Jiang, R. Zhang, Y. Zhang, L. Wu, W. Lu, J. Li, Y. Li, H. Zhang, Adv. Funct. Mater. 29 (2019), 1807326.
DOI URL |
[28] |
X. Zhu, B. Liu, H. Hou, Z. Huang, K.M. Zeinu, L. Huang, X. Yuan, D. Guo, J. Hu, J. Yang, Electrochim. Acta 248 (2017) 46-57.
DOI URL |
[29] |
S. Kumar, Y. Lei, N.H. Alshareef, M.A. Quevedo-Lopez, K.N. Salama, Biosens. Bioelectron. 121 (2018) 243-249.
DOI URL |
[30] |
R.B. Rakhi, P. Nayak, C. Xia, H.N. Alshareef, Sci. Rep. 6 (2016) 36422.
DOI URL |
[31] |
C. Dincer, R. Ktaich, E. Laubender, J.J. Hees, J. Kieninger, C.E. Nebel, J. Heinze, G.A. Urban, Electrochim. Acta 185 (2015) 101-106.
DOI URL |
[32] |
M. Stoytcheva, R. Zlatev, Z. Velkova, V. Gochev, G. Montero, L. Toscano, A. Olivas, Curr. Anal. Chem. 13 (2017) 89-103.
DOI URL |
[33] |
D. Lakshmi, M.J. Whitcombe, F. Davis, P.S. Sharma, B.B. Prasad, Electroanalysis 23 (2011) 305-320.
DOI URL |
[34] |
M.M. Rahman, N.S. Lopa, M.J. Ju, J.J. Lee, J. Electroanal. Chem. 792 (2017) 54-60.
DOI URL |
[35] |
D. Jin, M.H. Seo, B.T. Huy, Q.T. Pham, M.L. Conte, D. Thangadurai, Y.I. Lee, Biosens. Bioelectron. 77 (2016) 359-365.
DOI URL |
[36] |
M. Mesias-Garcia, E. Guerra-Hernandez, B. Garcia-Villanova, J. Agric. Food Chem. 58 (2010) 6027-6032.
DOI URL |
[37] |
R. Jerome, A.K. Sundramoorthy, J. Electrochem. Soc. 166 (2019) B3017-B3024.
DOI |
[38] |
G.V. Rebec, R.C. Pierce, Prog. Neurobiol. 43 (1994) 537-565.
PMID |
[39] |
N. Moghimi, K.T. Leung, Anal. Chem. 85 (2013) 5974-5980.
DOI URL |
[40] |
Q. Zhu, J. Bao, D. Huo, M. Yang, C. Hou, J. Guo, M. Chen, H. Fa, X. Luo, Y. Ma, Sens. Actuators B: Chem. 238 (2017) 1316-1323.
DOI URL |
[41] |
C.L. Sun, H.H. Lee, J.M. Yang, C.C. Wu, Biosens. Bioelectron. 26 (2011) 3450-3455.
DOI URL |
[42] |
C. Wang, J. Du, H. Wang, C. Zou, F. Jiang, P. Yang, Y. Du, Sens. Actuators B: Chem. 204 (2014) 302-309.
DOI URL |
[43] |
Z.H. Sheng, X.Q. Zheng, J.Y. Xu, W.J. Bao, F.B. Wang, X.H. Xia, Biosens. Bioelectron. 34 (2012) 125-131.
DOI URL |
[44] |
J. Ping, J. Wu, Y. Wang, Y. Ying, Biosens. Bioelectron. 34 (2012) 70-76.
DOI URL |
[45] |
Q. Li, C. Huo, K. Yi, L. Zhou, L. Su, X. Hou, Sens. Actuators B: Chem. 260 (2018) 346-356.
DOI URL |
[46] |
N. Murugan, M.B. Chan-Park, A.K. Sundramoorthy, J. Electrochem. Soc. 166 (2019) B3163-B3170.
DOI |
[47] |
N. Murugan, T.H.V. Kumar, N.R. Devi, A.K. Sundramoorthy, New J. Chem. 43 (2019) 15105-15114.
DOI |
[48] |
W. Zhang, Y. Chai, R. Yuan, J. Han, S. Chen, Sens. Actuators B: Chem. 183 (2013) 157-162.
DOI URL |
[49] |
K. Ghanbari, N. Hajheidari, Anal. Biochem. 473 (2015) 53-62.
DOI URL |
[50] |
Y.J. Yang, W. Li, Biosens. Bioelectron. 56 (2014) 300-306.
DOI PMID |
[51] |
S. Wang, W. Zhang, X. Zhong, Y. Chai, R. Yuan, Anal. Methods 7 (2015) 1471-1477.
DOI URL |
[52] |
S. Mukdasai, U. Crowley, M. Pravda, X. He, E.P. Nesterenko, P.N. Nesterenko, B. Paull, S. Srijaranai, J.D. Glennon, E. Moore, Sens. Actuators B: Chem. 218 (2015) 280-288.
DOI URL |
[53] |
X. Zhang, Y.C. Zhang, L.X. Ma, Sens. Actuators B: Chem. 227 (2016) 488-496.
DOI URL |
[54] |
Y. Wen, T.E. Rufford, X. Chen, N. Li, M. Lyu, L. Dai, L. Wang, Nano Energy 38 (2017) 368-376.
DOI URL |
[55] |
D. Applestone, A. Manthiram, RSC Adv. 2 (2012) 5411-5417.
DOI URL |
[56] | E. Restrepo, V. Benavides, A. Devia, S. Olarte, M. Arroyave, Y.C. Arango, Rev. Bras. Fisioter. 34 (2004) 1748-1751. |
[57] |
V. Swamy, A. Kuznetsov, L.S. Dubrovinsky, R.A. Caruso, D.G. Shchukin, B.C. Muddle, Phys. Rev. B 71 (2005), 184302.
DOI URL |
[58] |
T. Hu, J. Wang, H. Zhang, Z. Li, M. Hu, X. Wang, Phys. Chem. Chem. Phys. 17 (2015) 9997-10003.
DOI URL |
[59] |
L. Zhang, W. Su, Y. Huang, H. Li, L. Fu, K. Song, X. Huang, J. Yu, C.T. Lin, Nanosc. Res. Lett. 13 (2018) 343.
DOI URL |
[60] |
M. Hu, T. Hu, Z. Li, Y. Yang, R. Cheng, J. Yang, C. Cui, X. Wang, ACS Nano 12 (2018) 3578-3586.
DOI URL |
[61] |
Y. Wen, T.E. Rufford, D. Hulicova-Jurcakova, X. Zhu, L. Wang, ACS Appl. Mater. Interfaces 8 (2016) 18051-18059.
DOI URL |
[62] |
Y. Tang, J. Zhu, W. Wu, C. Yang, W. Lv, F. Wang, J. Electrochem. Soc. 164 (2017) A923-A929.
DOI URL |
[63] |
C. Yang, W. Que, X. Yin, Y. Tian, Y. Yang, M. Que, Electrochim. Acta 225 (2017) 416-424.
DOI URL |
[64] |
X. Zhang, W. Yan, J. Zhang, Y. Li, W. Tang, Q. Xu, RSC Adv. 5 (2015) 65532-65539.
DOI URL |
[65] |
S.S. Shankar, R.M. Shereema, R.B. Rakhi, ACS Appl. Mater. Interfaces 10 (2018) 43343-43351.
DOI URL |
[66] |
J. Jiang, X. Du, Nanoscale 6 (2014) 11303-11309.
DOI URL |
[67] |
P. Gai, H. Zhang, Y. Zhang, W. Liu, G. Zhu, X. Zhang, J. Chen, J. Mater. Chem. B 1 (2013) 2742-2749.
DOI URL |
[68] |
N.M.M.A. Edris, J. Abdullah, S. Kamaruzaman, M.I. Saiman, Y. Sulaiman, Arab. J. Chem. 11 (2018) 1301-1312.
DOI URL |
[69] |
F. Li, J. Chai, H. Yang, D. Han, L. Niu, Talanta 81 (2010) 1063-1068.
DOI URL |
[70] |
X. Feng, Y. Zhang, J. Zhou, Y. Li, S. Chen, L. Zhang, Y. Ma, L. Wang, X. Yan, Nanoscale 7 (2015) 2427-2432.
DOI URL |
[71] |
V. Veeramani, R. Madhu, S.-M. Chen, B.-S. Lou, J. Palanisamy, V.S. Vasantha, Sci. Rep. 5 (2015) 10141.
DOI URL |
[72] |
B. Hu, Y. Liu, Z.W. Wang, Y. Song, M. Wang, Z. Zhang, C.S. Liu, Appl. Surf. Sci. 441 (2018) 694-707.
DOI URL |
[73] |
D. Zhao, G. Yu, K. Tian, C. Xu, Biosens. Bioelectron. 82 (2016) 119-126.
DOI URL |
[74] |
K.C. Lin, T.H. Tsai, S.M. Chen, Biosens. Bioelectron. 26 (2010) 608-614.
DOI URL |
[75] |
S. Yu, C. Luo, L. Wang, H. Peng, Z. Zhu, Analyst 138 (2013) 1149-1155.
DOI URL |
[76] |
S. Qi, B. Zhao, H. Tang, X. Jiang, Electrochim. Acta 161 (2015) 395-402.
DOI URL |
[77] |
A. Safavi, N. Maleki, O. Moradlou, F. Tajabadi, Anal. Biochem. 359 (2006) 224-229.
DOI URL |
[78] |
L. Yang, D. Liu, J. Huang, T. You, Sens. Actuators B: Chem. 193 (2014) 166-172.
DOI URL |
[1] | Peixing Chen, Sixiang Wang, Zhi Huang, Yan Gao, Yu Zhang, Chunli Wang, Tingting Xia, Linhao Li, Wanqian Liu, Li Yang. Multi-functionalized nanofibers with reactive oxygen species scavenging capability and fibrocartilage inductivity for tendon-bone integration [J]. J. Mater. Sci. Technol., 2021, 70(0): 91-104. |
[2] | Jiangqi Xu, Zixu Xie, Fanglin Du, Xing Wang. One-step anti-superbug finishing of cotton textiles with dopamine-menthol [J]. J. Mater. Sci. Technol., 2021, 69(0): 79-88. |
[3] | Zuoting Yang, Ke Yang, Yuhong Cui, Tariq Shah, Mudasir Ahmad, Qiuyu Zhang, Baoliang Zhang. Synthesis of surface imprinted polymers based on wrinkled flower-like magnetic graphene microspheres with favorable recognition ability for BSA [J]. J. Mater. Sci. Technol., 2021, 74(0): 203-215. |
[4] | Kaili Yao, Xiaojun Tan, Bing Dai, Jie Bai, Qiaoyang Sun, Wenxin Cao, Jiwen Zhao, Lei Yang, Jiecai Han, Jiaqi Zhu. Au nanospheres modified boron-doped diamond microelectrode grown via hydrogen plasma etching solid doping source for dopamine detection [J]. J. Mater. Sci. Technol., 2020, 49(0): 42-46. |
[5] | Lingxu Yang, Ying Wang, Ruijia Liu, Huijun Liu, Xue Zhang, Chaoliu Zeng, Chao Fu. In-situ synthesis of nanocrystalline TiC powders, nanorods, and nanosheets in molten salt by disproportionation reaction of Ti(II) species [J]. J. Mater. Sci. Technol., 2020, 37(0): 173-180. |
[6] | Dhiman Bhattacharyya, Pankaj Kumar, York R. Smith, Swomitra K. Mohanty, Mano Misra. Plasmonic-enhanced electrochemical detection of volatile biomarkers with gold functionalized TiO2 nanotube arrays [J]. J. Mater. Sci. Technol., 2018, 34(6): 905-913. |
[7] | Fan Changjiang,Wang Dong-An. Novel Gelatin-based Nano-gels with Coordination-induced Drug Loading for Intracellular Delivery [J]. J. Mater. Sci. Technol., 2016, 32(9): 840-844. |
[8] | Xiaoli Liu, Zhen Zhen, Jing Liu, Tingfei Xi, Yudong Zheng, Shaokang Guan, Yufeng Zheng, Yan Cheng. Multifunctional MgF2/Polydopamine Coating on Mg Alloy for Vascular Stent Application [J]. J. Mater. Sci. Technol., 2015, 31(7): 733-743. |
[9] | A. Pruna, D. Pullini, D. Busquets. Structure and Properties of Chemically-reduced Functionalized Graphene Oxide Platelets [J]. J. Mater. Sci. Technol., 2015, 31(5): 458-462. |
[10] | Hui JIANG, Yaoguang LIU, Ningkang HUANG. Microanalysis on the Hydrogen Ion Irradiated 50 wt pct TiC-C Films [J]. J Mater Sci Technol, 2007, 23(01): 127-130. |
[11] | Qun DONG, Liqing CHEN, Mingjiu ZHAO, Jing BI. Analysis of in situ Reaction and Pressureless Infiltration Process in Fabricating TiC/Mg Composites [J]. J Mater Sci Technol, 2004, 20(01): 3-7. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||