J. Mater. Sci. Technol. ›› 2021, Vol. 69: 106-118.DOI: 10.1016/j.jmst.2020.08.017
• Research Article • Previous Articles Next Articles
Shi Chenga,b, Jin Kea,b, Mengyu Yaoa, Hongwei Shaoa, Jielong Zhoua, Ming Wanga, Xiongfa Jia, Guoqing Zhonga, Feng Penga,*(), Limin Maa,*(
), Yu Zhanga,b,*(
)
Received:
2020-05-14
Revised:
2020-06-16
Accepted:
2020-06-25
Published:
2021-04-10
Online:
2021-05-15
Contact:
Feng Peng,Limin Ma,Yu Zhang
About author:
luck_2001@126.com (Y. Zhang).Shi Cheng, Jin Ke, Mengyu Yao, Hongwei Shao, Jielong Zhou, Ming Wang, Xiongfa Ji, Guoqing Zhong, Feng Peng, Limin Ma, Yu Zhang. Improved osteointegration and angiogenesis of strontium-incorporated 3D-printed tantalum scaffold via bioinspired polydopamine coating[J]. J. Mater. Sci. Technol., 2021, 69: 106-118.
Gene | Forward primer sequence(5’-3’) | Reverse primer sequence(3’-5’) |
---|---|---|
ALP | CGTCTCCATGGTGGATTATGCT | CCCAGGCACAGTGGTCAAG |
RUNX-2 | GGGACCGACACAGCCATATA | TCTTAGGGTCTCGGAGGGAA |
Col-1 | CTGCCCAGAAGAATATGTATCACC | GAAGCAAAGTTTCCTCCAAGACC |
OCN | GCCCTGACTGCATTCTGCCTCT | TCACCACCTTACTGCCCTCCTG |
KDR | AGCAGGATGGCAAAGACTAC | TACTTCCTCCTCCTCCATACAG |
VEGF | CAGGACATTGCTGTGCTTTG | CTCAGAAGCAGGTGAGAGTAAG |
HIF-α | TCTACCAGTTGCAGCCTGAC | GTTCCCTTCCTCCTTGATTT |
GAPDH(rat) | ACAGCAACAGGGTGGTGGAC | TTTGAGGGTGCAGCGAACTT |
GAPDH(human) | CAAGAGCACAAGAGGAAGAGAG | CTACATGGCAACTGTGAGGAG |
Table 1 The primer sequences used in RT-PCR.
Gene | Forward primer sequence(5’-3’) | Reverse primer sequence(3’-5’) |
---|---|---|
ALP | CGTCTCCATGGTGGATTATGCT | CCCAGGCACAGTGGTCAAG |
RUNX-2 | GGGACCGACACAGCCATATA | TCTTAGGGTCTCGGAGGGAA |
Col-1 | CTGCCCAGAAGAATATGTATCACC | GAAGCAAAGTTTCCTCCAAGACC |
OCN | GCCCTGACTGCATTCTGCCTCT | TCACCACCTTACTGCCCTCCTG |
KDR | AGCAGGATGGCAAAGACTAC | TACTTCCTCCTCCTCCATACAG |
VEGF | CAGGACATTGCTGTGCTTTG | CTCAGAAGCAGGTGAGAGTAAG |
HIF-α | TCTACCAGTTGCAGCCTGAC | GTTCCCTTCCTCCTTGATTT |
GAPDH(rat) | ACAGCAACAGGGTGGTGGAC | TTTGAGGGTGCAGCGAACTT |
GAPDH(human) | CAAGAGCACAAGAGGAAGAGAG | CTACATGGCAACTGTGAGGAG |
Fig. 1. Surface views (a) and optical images (b) of PT, PTD, and PTD-Sr samples. Accumulative release of Sr concentration for PTD-Sr samples after immersion in PBS for 14 d (c). High resolution of N 1s (d) and Sr 3d (e) of PTD and PTD-Sr2 samples.
Fig. 2. Early adhesion of rBMSCs after stimulation with various extracts for 4 h (a) and results of quantitative analysis (b). Proliferation of rBMSCs after culture on sample surfaces for different points in time (c).
Fig. 3. Live/Dead staining of rBMSCs after direct culture on sample surfaces for 3 d (a). SEM images of rBMSCs after culture on various sample surfaces for 3 d (b).
Fig. 4. In vitro osteogenic differentiation tests. Alizarin red staining (a) and ALP staining (b) of rBMSCs after stimulation with various extracts for 14 and 21 d. Corresponding quantitative results of Alizarin red staining and ALP activity (c, d). RT-PCR results for osteogenic related genes of rBMSCs after culture on various sample surfaces for 7 d (e) and 14 d (f).
Fig. 5. In vitro angiogenic tests. Results for tube formation assay of HUVECs after stimulation with sample extracts (a) and the quantitative tube lengths (c). Results for wound healing assay of HUVECs after culture with extracts for 12 h (b) and the corresponding percentage of migration (d).
Fig. 6. Results of Transwell assay (a) and count of migrated HUVECs number (b). Secretion of VEGF protein of HUVECs directly cultured on samples (c). RT-PCR results of angiogenic related genes after culture on various sample surfaces for 7 d (d) and 14 d (e).
Fig. 7. Histological observations. HE stains of PT, PTD, and PTD-Sr 2 after implantation in rat femur condyles for 8 and 12 weeks. The blue arrows indicate the newborn osseous tissues grow into the scaffolds at low magnification. The yellow pentagrams indicate the new bone area in each scaffold and the yellow squares indicate the implant at high magnification.
Fig. 8. Masson staining of PT, PTD, and PTD-Sr 2 after implantation in rat femur condyles for 8 and 12 weeks. The blue arrows indicate the newborn osseous tissues grow into the scaffolds at low magnification. The yellow pentagrams indicate the new bone area in each scaffold and the yellow squares indicate the implant at high magnification.
Fig. 9. Observation of in vivo angiogenesis. CD31 and DAPI immunofluorescent staining for histological slices of PT, PTD, and PTD-Sr 2 after implantation in rat femur condyles for 12 weeks. Arrow indicates the new growth vessels.
[1] |
H. Yuan, H. Fernandes, P. Habibovic, J. de Boer, A.M.C. Barradas, A. de Ruiter, W.R. Walsh, C.A. van Blitterswijk, J.D. de Bruijn, Proc. Natl. Acad. Sci. U.S.A. 107 (2010) 13614-13619.
DOI URL |
[2] |
W. Tang, D. Lin, Y. Yu, H. Niu, H. Guo, Y. Yuan, C. Liu, Acta Biomater. 32 (2016) 309-323.
DOI PMID |
[3] |
T. Takizawa, N. Nakayama, H. Haniu, K. Aoki, M. Okamoto, H. Nomura, M. Tanaka, A. Sobajima, K. Yoshida, T. Kamanaka, K. Ajima, A. Oishi, C. Kuroda, H. Ishida, S. Okano, S. Kobayashi, H. Kato, N. Saito, Adv. Mater. 30 (2018), 1703608.
DOI URL |
[4] | Y. Liu, C. Bao, D. Wismeijer, G. Wu, Mater. Biol. Appl. 49 (2015) 323-329. |
[5] | J.D. Bobyn, R.A. Poggie, J.J. Krygier, D.G. Lewallen, A.D. Hanssen, R.J. Lewis, A.S. Unger, T. J.O’Keefe, M.J. Christie, S. Nasser, J.E. Wood, S.D. Stulberg, M. Tanzer, J. Bone Joint Surg.-Am. Vol. 86A (2004) 123-129. |
[6] |
M. Niinomi, M. Nakai, J. Hieda, Acta Biomater. 8 (2012) 3888-3903.
DOI PMID |
[7] |
Y. Zhang, L. Li, Z.J. Shi, J. Wang, Z.H. Li, Eur. J. Orthop. Surg. Traumatol. 23 (2013) 211-217.
DOI URL |
[8] |
M. Stiehler, M. Lind, T. Mygind, A. Baatrup, A. Dolatshahi-Pirouz, H. Li, M. Foss, F. Besenbacher, M. Kassem, C. Bunger, J. Biomed. Mater. Res. A 86 (2008) 448-458.
PMID |
[9] |
Z. Tang, Y. Xie, F. Yang, Y. Huang, C. Wang, K. Dai, X. Zheng, X. Zhang, PloS one 8 (2013), e66263.
DOI URL |
[10] |
L. Wang, X. Hu, X. Ma, Z. Ma, Y. Zhang, Y. Lu, X. Li, W. Lei, Y. Feng, Colloids Surf. B: Biointerfaces 148 (2016) 440-452.
DOI URL |
[11] |
X. Li, L. Wang, X. Yu, Y. Feng, C. Wang, K. Yang, D. Su, Mater. Sci. Eng. C 33 (2013) 2987-2994.
DOI URL |
[12] |
H. Matsuno, A. Yokoyama, F. Watari, M. Uo, T. Kawasaki, Biomaterials 22 (2001) 1253-1262.
PMID |
[13] | R. Wauthle, J. van der Stok, S.Amin Yavari, J. Van Humbeeck, J.P. Kruth, A.A. Zadpoor, H. Weinans, M. Mulier, J. Schrooten, Acta Biomater. 14 (2015) 217-225. |
[14] | M. Lu, X. Zhuang, K. Tang, P. Wu, X. Guo, L. Yin, H. Cao, D. Zou, Cellular Phys. Biochem. 51 (2018) 589-609. |
[15] |
J. Nagels, M. Stokdijk, P.M. Rozing, J. Shoulder Elbow Surg. 12 (2003) 35-39.
DOI URL |
[16] | W.D. Bugbee, W.J. Culpepper, C.A. Engh, C.A. Engh, J. Bone Joint Surg.-Am. 79A (1997) 1007-1012. |
[17] |
D.R. Sumner, J. Biomech. 48 (2015) 797-800.
DOI PMID |
[18] |
V. Karageorgiou, D. Kaplan, Biomaterials 26 (2005) 5474-5491.
PMID |
[19] |
L.W. Lin, Y.F. Fang, Y.X. Liao, G. Chen, C.X. Gao, P.Z. Zhu, Adv. Eng. Mater. 21 (2019), 1801013.
DOI URL |
[20] |
Y. Guo, K. Xie, W. Jiang, L. Wang, G. Li, S. Zhao, W. Wu, Y. Hao, ACS Biomater. Sci. Eng. 5 (2018) 1123-1133.
DOI URL |
[21] |
J. Qin, Q. Chen, C. Yang, Y. Huang, J. Alloys Compd. 654 (2016) 39-44.
DOI URL |
[22] |
K.C. Nune, S. Li, R.D.K. Misra, Sci. China Mater. 61 (2017) 455-474.
DOI URL |
[23] |
H. Ma, T. Li, Z. Huan, M. Zhang, Z. Yang, J. Wang, J. Chang, C. Wu, NPG Asia Mater. 10 (2018) 31-44.
DOI URL |
[24] |
A.P. Kusumbe, S.K. Ramasamy, R.H. Adams, Nature 507 (2014) 323-328.
DOI PMID |
[25] |
C.J. Percival, J.T. Richtsmeier, Develop. Dynamics 242 (2013) 909-922.
DOI URL |
[26] |
H. Xie, Z. Cui, L. Wang, Z.Y. Xia, Y. Hu, L.L. Xian, C.J. Li, L. Xie, J. Crane, M. Wan, G.H. Zhen, Q. Bian, B. Yu, W.Z. Chang, T. Qiu, M. Pickarski, L.T. Duong, J.J. Windle, X.H. Luo, E.Y. Liao, X. Cao, Nat. Med. 20 (2014) 1270-1278.
DOI URL |
[27] | S.E. Kim, Y.P. Yun, J.Y. Lee, J.S. Shim, K. Park, J.B. Huh, J. Tissue Eng. Regener. Med. E 9 (2015) 219-228. |
[28] |
H. Schliephake, C. Botel, A. Forster, B. Schwenzer, J. Reichert, D. Scharnweber, Biomaterials 33 (2012) 1315-1322.
DOI PMID |
[29] |
A.M. Nair, Y.T. Tsai, K.M. Shah, J. Shen, H. Weng, J. Zhou, X. Sun, R. Saxena, J. Borrelli, L. Tang, Biomaterials 34 (2013) 7364-7371.
DOI URL |
[30] |
J. Zhou, L. Zhao, Sci. Rep. 6 (2016) 29069.
DOI URL |
[31] |
Y. Yu, G. Jin, Y. Xue, D. Wang, X. Liu, J. Sun, Acta Biomater. 49 (2017) 590-603.
DOI URL |
[32] | J.J. Li, C.R. Dunstan, A. Entezari, Q. Li, R. Steck, S. Saifzadeh, A. Sadeghpour, J.R. Field, A. Akey, M. Vielreicher, O. Friedrich, S.I. Roohani-Esfahani, H. Zreiqat, Adv. Health Mater. 8 (2019), e1801298. |
[33] |
H.Y. Zhu, D. Zhai, C.C. Lin, Y.L. Zhang, Z.G. Huan, J. Chang, C.T. Wu, J. Mater. Chem. B 4 (2016) 6200-6212.
DOI URL |
[34] |
L. Mao, L. Xia, J. Chang, J. Liu, L. Jiang, C. Wu, B. Fang, Acta Biomater. 61 (2017) 217-232.
DOI URL |
[35] |
S.P. Nielsen, Bone 35 (2004) 583-588.
PMID |
[36] |
L. Cianferotti, F. D’Asta, M.L. Brandi, Therap. Adv. Musculoskeletal Disease 5 (2013) 127-139.
DOI URL |
[37] |
W.J. Zhang, H.L. Cao, X.C. Zhang, G.L. Li, Q. Chang, J. Zhao, Y.Q. Qiao, X. Ding, G.Z. Yang, X.Y. Liu, X.Q. Jiang, Nanoscale 8 (2016) 5291-5301.
DOI URL |
[38] |
F. Zhao, B. Lei, X. Li, Y. Mo, R. Wang, D. Chen, X. Chen, Biomaterials 178 (2018) 36-47.
DOI URL |
[39] |
L. Jia, F. Han, H. Wang, C. Zhu, Q. Guo, J. Li, Z. Zhao, Q. Zhang, X. Zhu, B. Li, J. Orthop. Translat. 17 (2019) 82-95.
DOI URL |
[40] |
Z. Wei, P. Tian, X. Liu, B. Zhou, Colloids Surf. B: Biointerfaces 121 (2014) 451-460.
DOI URL |
[41] |
H. Li, F. Peng, D. Wang, Y. Qiao, D. Xu, X. Liu, Biomater. Sci. 6 (2018) 1846-1858.
DOI URL |
[42] |
J. Ryu, S.H. Ku, H. Lee, C.B. Park, Adv. Funct. Mater. 20 (2010) 2132-2139.
DOI URL |
[43] |
X. Gao, J.L. Song, P. Ji, X.H. Zhang, X.M. Li, X. Xu, M.K. Wang, S.Q. Zhang, Y. Deng, F. Deng, S.C. Wei, ACS Appl. Mater. Interfaces 8 (2016) 3499-3515.
DOI URL |
[44] |
D.D. Xia, Y. Liu, S.Y. Wang, R.C. Zeng, Y.S. Liu, Y.F. Zheng, Y.S. Zhou, Sci. China Mater. 62 (2019) 256-272.
DOI URL |
[45] |
L.Y. Cui, L. Sun, R.C. Zeng, Y.F. Zheng, S.Q. Li, Sci China Mater. 61 (2018) 607-618.
DOI URL |
[46] |
L. Ma, X. Wang, N. Zhao, Y. Zhu, Z. Qiu, Q. Li, Y. Zhou, Z. Lin, X. Li, X. Zeng, H. Xia, S. Zhong, Y. Zhang, Y. Wang, C. Mao, ACS Appl. Mater. Interfaces 10 (2018) 42146-42154.
DOI URL |
[47] |
C. Wu, P. Han, X. Liu, M. Xu, T. Tian, J. Chang, Y. Xiao, Acta Biomater. 10 (2014) 428-438.
DOI URL |
[48] |
H. Ma, J. Luo, Z. Sun, L. Xia, M. Shi, M. Liu, J. Chang, C. Wu, Biomaterials 111 (2016) 138-148.
DOI URL |
[1] | Jianglong Yan, Dandan Xia, Pan Xiong, Yangyang Li, Wenhao Zhou, Qiyao Li, Pei Wang, Yufeng Zheng, Yan Cheng. Polyetheretherketone with citrate potentiated influx of copper boosts osteogenesis, angiogenesis, and bacteria-triggered antibacterial abilities [J]. J. Mater. Sci. Technol., 2021, 71(0): 31-43. |
[2] | Kai Chen, Changci Tong, Jinge Yang, Peifang Cong, Ying Liu, Xiuyun Shi, Xu Liu, Jun Zhang, Rufei Zou, Keshen Xiao, Yuyang Ni, Lei Xu, Mingxiao Hou, Hongxu Jin, Yunen Liu. Injectable melatonin-loaded carboxymethyl chitosan (CMCS)-based hydrogel accelerates wound healing by reducing inflammation and promoting angiogenesis and collagen deposition [J]. J. Mater. Sci. Technol., 2021, 63(0): 236-245. |
[3] | Mingjun Li, Christoph Schlaich, Jianguang Zhang, Ievgen S. Donskyi, Karin Schwibbert, Frank Schreiber, Yi Xia, Jörg Radnik, Tanja Schwerdtle, Rainer Haag. Mussel-inspired multifunctional coating for bacterial infection prevention and osteogenic induction [J]. J. Mater. Sci. Technol., 2021, 68(0): 160-171. |
[4] | Hui Liu, Rui Liu, Ihsan Ullah, Shuyuan Zhang, Ziqing Sun, Ling Ren, Ke Yang. Rough surface of copper-bearing titanium alloy with multifunctions of osteogenic ability and antibacterial activity [J]. J. Mater. Sci. Technol., 2020, 48(0): 130-139. |
[5] | Daquan Liu, Yanxia Wang, Xue Jiang, Huijun Kang, Xiong Yang, Xiaoying Zhang, Tongmin Wang. Ultrahigh electrical conductivities and low lattice thermal conductivities of La, Dy, and Nb Co-doped SrTiO3 thermoelectric materials with complex structures [J]. J. Mater. Sci. Technol., 2020, 52(0): 172-179. |
[6] | Jinkai Zhang, Wenhui Zhou, Hui Wang, Kaili Lin, Fengshan Chen. 3D-printed surface promoting osteogenic differentiation and angiogenetic factor expression of BMSCs on Ti6Al4V implants and early osseointegration in vivo [J]. J. Mater. Sci. Technol., 2019, 35(2): 336-343. |
[7] | Yonghui Yuan, Shujing Jin, Xun Qi, Xudong Chen, Wei Zhang, Ke Yang, Hongshan Zhong. Osteogenesis stimulation by copper-containing 316L stainless steel via activation of akt cell signaling pathway and Runx2 upregulation [J]. J. Mater. Sci. Technol., 2019, 35(11): 2727-2733. |
[8] | Yanli Lu, Fang Liu, Xiang Li, Feng Gao, Zheng Chen. First-Principles Study on the Stability and Electronic Properties of Bi-Doped Sr3Ti2O7 [J]. J. Mater. Sci. Technol., 2018, 34(5): 891-898. |
[9] | Jiang Fengrui,Cheng Laifei,Zhang Jiaxin,Wang* Yiguang. Fabrication of barium-strontium aluminosilicate coatings on C/SiC composites via laser cladding [J]. J. Mater. Sci. Technol., 2017, 33(2): 166-171. |
[10] | Wan Peng,Tan Lili,Yang Ke. Surface Modification on Biodegradable Magnesium Alloys as Orthopedic Implant Materials to Improve the Bio-adaptability: A Review [J]. J. Mater. Sci. Technol., 2016, 32(9): 827-834. |
[11] | Jin Shujing,Ren Ling,Yang Ke. Bio-Functional Cu Containing Biomaterials: a New Way to Enhance Bio-Adaption of Biomaterials [J]. J. Mater. Sci. Technol., 2016, 32(9): 835-839. |
[12] | Chen Shaoming,Gao Manman,Zhou Zhiyu,Liang Jiabi,Gong Ming,Dai Xuejun,Liang Tangzhao,Ye Jiacheng,Wu Gang,Zou Lijin,Wang Yingjun,Zou Xuenong. Opposite Regulation of Chondrogenesis and Angiogenesis in Cartilage Repair ECM Materials under Hypoxia [J]. J. Mater. Sci. Technol., 2016, 32(9): 978-985. |
[13] | Junjie Han, Peng Wan, Yu Sun, Zongyuan Liu, Xinmin Fan, Lili Tan, Ke Yang. Fabrication and Evaluation of a Bioactive Sr-Ca-P Contained Micro-Arc Oxidation Coating on Magnesium Strontium Alloy for Bone Repair Application [J]. J. Mater. Sci. Technol., 2016, 32(3): 233-244. |
[14] | Hengcheng Liao, Wanru Huang, Qigui Wang, Fang Jia. Effects of Strontium, Magnesium Addition, Temperature Gradient, and Growth Velocity on Al–Si Eutectic Growth in a Unidirectionally-solidified Al–13 wt% Si Alloy [J]. J. Mater. Sci. Technol., 2014, 30(2): 146-153. |
[15] | Batool Farhoodi, Ramin Raiszadeh*, Mohammad-Hasan Ghanaatian. Role of Double Oxide Film Defects in the Formation of Gas Porosity in Commercial Purity and Sr-containing Al Alloys [J]. J. Mater. Sci. Technol., 2014, 30(2): 154-162. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||