J. Mater. Sci. Technol. ›› 2021, Vol. 65: 182-189.DOI: 10.1016/j.jmst.2020.07.004
• Research Article • Previous Articles Next Articles
Ruimei Yuan, Hejun Li*(), Xuemin Yin, Peipei Wang, Jinhua Lu*(
), Leilei Zhang
Received:
2020-07-05
Accepted:
2020-07-09
Published:
2021-02-28
Online:
2021-03-15
Contact:
Hejun Li,Jinhua Lu
About author:
lujinhua@nwpu.edu.cn (J. Lu).Ruimei Yuan, Hejun Li, Xuemin Yin, Peipei Wang, Jinhua Lu, Leilei Zhang. Construction of multi-structures based on Cu NWs-supported MOF-derived Co oxides for asymmetric pseudocapacitors[J]. J. Mater. Sci. Technol., 2021, 65: 182-189.
Fig. 2. SEM images of (a1) Cu nanowires, (a2, a3) Cu@Co-MOF core-shell nanowires; (b1) SEM, (b2) TEM and (b3) element mappings of CuCo-SS; (c1) SEM, (c2) TEM and (c3) element mappings of CuCo-DS4; (d1) SEM, (d2) TEM and (d3) element mappings of CuCo-DS5; (e1) SEM, (e2) TEM and (e3) element mappings of CuCo-NR.
Fig. 3. XPS spectra of CuCo-SS, CuCo-DS4, CuCo-DS5 and CuCo-NR for (a) survey, (b) O 1s and (c) C 1s; XPS spectra of CuCo-DS5 for (d) Co 2p and (e) Cu 2p.
Fig. 5. Electrochemical performance of CuCo-DS5. (a) CV curves from 2 mV s-1 to 100 mV s-1. (b) GCD curves from 0.5 A g-1 to 10 A g-1. (c) Cycling stability at the constant current density of 5 A g-1. Inset: Specific capacities and specific capacitance at different current densities. (d) The plots of log(i) against log(v) at peaks of each current density. (e) Graphical illustration of the contributions of capacitive and diffuse parts at 10 mV s-1. (f) Quantitative contribution of the capacitive- and diffusion-parts at different scan rates.
Fig. 7. Electrochemical performance of the CuCo-DS5//AC: (a) CV curves of the CuCo-DS5 and AC electrode at 50 mV s-1. (b) CV curves of the device at 20 mV s-1 under various potential windows. (c) GCD curves with various potential windows. (d) CV curves at different scan rates. (e) GCD curves from 1 A g-1 to 10 A g-1. (f) Specific capacitance at various current densities calculated from Fig. 6e. (g) Ragone plots compared to reported Cu- and Co-based ASC devices. (h) Cycling stability of the device at 10 A g-1. Inset: Practical demonstration of CuCo-DS5//AC cell by powering a blue LED.
[1] |
J.R. Miller, P. Simon, Science 321 (2008) 651.
DOI URL PMID |
[2] |
X. Yin, H. Li, Y. Fu, R. Yuan, J. Lu, Chem. Eng. J. 392 (2020), 124820.
DOI URL |
[3] |
P. Simon, Y. Gogotsi, B. Dunn, Science 343 (2014) 1210.
DOI URL PMID |
[4] |
A.W. Anwar, A. Majeed, N. Iqbal, W. Ullah, A. Shuaib, U. Ilyas, F. Bibi, H.M. Rafique, J. Mater. Sci. Technol. 31 (2015) 699-707.
DOI URL |
[5] |
Y. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh, W. Cai, P.J. Ferreira, A. Pirkle, R.M. Wallace, K.A. Cychosz, M. Thommes, D. Su, E.A. Stach, R.S. Ruoff, Science 332 (2011) 1537.
DOI URL |
[6] |
V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.-L. Taberna, S.H. Tolbert, H.D. Abru˜ na, P. Simon, B. Dunn, Nat. Mater. 12 (2013) 518-522.
DOI URL PMID |
[7] | R.M. Obodo, N.M. Shinde, U.K. Chime, S. Ezugwu, A.C. Nwanya, I. Ahmad, M. Maaza, P.M. Ejikeme, F.I. Ezema, Curr. Opin. Electrochem. 21 (2020) 242-249. |
[8] |
P. Xu, K. Ye, M. Du, J. Liu, K. Cheng, J. Yin, G. Wang, D. Cao, RSC Adv. 5 (2015) 36656-36664.
DOI URL |
[9] | K.D. Verma, P. Sinha, S. Banerjee, K.K. Kar, in: K.K. Kar (Ed.), Characteristics of Electrode Materials for Supercapacitors, Springer International Publishing, Cham, 2020, pp. 269-285. |
[10] |
C.C. Hu, K.H. Chang, M.C. Lin, Y.T. Wu, Nano Lett. 6 (2006) 2690-2695.
DOI URL PMID |
[11] |
L. Benhaddad, L. Makhloufi, B. Messaoudi, K. Rahmouni, H. Takenouti, J. Mater. Sci. Technol. 27 (2011) 585-593.
DOI URL |
[12] | T.H. Lee, D.T. Pham, R. Sahoo, J. Seok, T.H.T. Luu, Y.H. Lee, Energy Storage Mater. 12 (2018) 223-231. |
[13] |
I.E. Rauda, V. Augustyn, L.C. Saldarriaga-Lopez, X. Chen, L.T. Schelhas, G.W. Rubloff, B. Dunn, S.H. Tolbert, Adv. Funct. Mater. 24 (2014) 6717-6728.
DOI URL |
[14] |
R. Li, J. Liu, Electrochim. Acta 120 (2014) 52-56.
DOI URL |
[15] |
G. Chen, Q.F. Lü, H.B. Zhao, J. Mater. Sci. Technol. 31 (2015) 1101-1107.
DOI URL |
[16] |
G. Zhang, Y. Chen, Y. Jiang, C. Lin, Y. Chen, H. Guo, J. Mater. Sci. Technol. 34 (2018) 1538-1543.
DOI URL |
[17] |
Y. Hong, J. Xu, J.S. Chung, W.M. Choi, J. Mater. Sci. Technol. 58 (2020) 73-79.
DOI URL |
[18] |
B. Zhao, P. Liu, H. Zhuang, Z. Jiao, T. Fang, W. Xu, B. Lu, Y. Jiang, J. Mater. Chem. A Mater. Energy Sustain. 1 (2013) 367-373.
DOI URL |
[19] |
Y.J. Zou, X. Zhang, J. Liang, C.L. Xiang, H.L. Chu, H.Z. Zhang, F. Xu, L.X. Sun, J. Mater. Sci. Technol. (2020).
DOI URL PMID |
[20] |
C. Yuan, H.B. Wu, Y. Xie, X.W. Lou, Angew. Chem. Int. Ed. 53 (2014) 1488-1504.
DOI URL |
[21] |
L. Peng, P. Xiong, L. Ma, Y. Yuan, Y. Zhu, D. Chen, X. Luo, J. Lu, K. Amine, G. Yu, Nat. Commun. 8 (2017) 15139.
DOI URL PMID |
[22] |
X. Yang, C. Xiang, Y. Zou, J. Liang, H. Zhang, E. Yan, F. Xu, X. Hu, Q. Cheng, L. Sun, J. Mater. Sci. Technol. (2020).
DOI URL PMID |
[23] | T. Hao, Y. Liu, G. Liu, C. Peng, B. Chen, Y. Feng, J. Ru, J. Yang, Energy Storage Mater. 23 (2019) 225-232. |
[24] |
L. Wu, J. Lang, P. Zhang, X. Zhang, R. Guo, X. Yan, J. Mater. Chem. A Mater. Energy Sustain. 4 (2016) 18392-18400.
DOI URL |
[25] |
A. Zhang, W. Zheng, Z. Yuan, J. Tian, L. Yue, R. Zheng, D. Wei, J. Liu, Chem. Eng. J. 380 (2020), 122486.
DOI URL |
[26] |
E. Hu, Y. Feng, J. Nai, D. Zhao, Y. Hu, X.W. Lou, Energy Environ. Sci. 11 (2018) 872-880.
DOI URL |
[27] |
Q. Wei, F. Xiong, S. Tan, L. Huang, E.H. Lan, B. Dunn, L. Mai, Adv. Mater. 29 (2017), 1602300.
DOI URL |
[28] |
Y.M. Chen, L. Yu, X.W. Lou, Angew. Chem. Int. Ed. 55 (2016) 5990-5993.
DOI URL |
[29] |
H. You, L. Zhang, Y. Jiang, T. Shao, M. Li, J. Gong, J. Mater. Chem. A Mater. Energy Sustain. 6 (2018) 5265-5270.
DOI URL |
[30] |
A. Shanmugavani, R.K. Selvan, Electrochim. Acta 188 (2016) 852-862.
DOI URL |
[31] |
F. Tadayon, Z. Sepehri, RSC Adv. 5 (2015) 65560-65568.
DOI URL |
[32] |
A. Pendashteh, M.S. Rahmanifar, R.B. Kaner, M.F. Mousavi, Chem. Commun. (Camb.) 50 (2014) 1972-1975.
DOI URL |
[33] |
W. Lu, J. Shen, P. Zhang, Y. Zhong, Y. Hu, X.W. Lou, Angew. Chem. Int. Ed. 58 (2019) 15441-15447.
DOI URL |
[34] |
H. Li, Z. Li, Z. Wu, M. Sun, S. Han, C. Cai, W. Shen, X. Liu, Y. Fu, J. Colloid Interface Sci. 549 (2019) 105-113.
DOI URL PMID |
[35] |
C. Jin, Y. Cui, G. Zhang, W. Luo, Y. Liu, Y. Sun, Z. Tian, W. Zheng, Chem. Eng. J. 343 (2018) 331-339.
DOI URL |
[36] |
F. Wang, J. Zheng, G. Li, J. Ma, C. Yang, Q. Wang, Mater. Chem. Phys. 215 (2018) 121-126.
DOI URL |
[37] |
Y. Zhang, J. Xu, Y. Zheng, Y. Zhang, X. Hu, T. Xu, RSC Adv. 7 (2017) 3983-3991.
DOI URL |
[38] |
Y. Zhang, H. Liu, M. Huang, J.M. Zhang, W. Zhang, F. Dong, Y.X. Zhang, ChemElectroChem 4 (2017) 721-727.
DOI URL |
[39] |
S. Liu, K. San Hui, K.N. Hui, J.M. Yun, K.H. Kim, J. Mater. Chem. A Mater. Energy Sustain. 4 (2016) 8061-8071.
DOI URL |
[40] |
W. Xu, J. Lu, W. Huo, J. Li, X. Wang, C. Zhang, X. Gu, C. Hu, Nanoscale 10 (2018) 14304-14313.
DOI URL PMID |
[41] |
W. Lu, Z. Yuan, C. Xu, J. Ning, Y. Zhong, Z. Zhang, Y. Hu, J. Mater. Chem. A Mater. Energy Sustain. 7 (2019) 5333-5343.
DOI URL |
[42] |
R. Yuan, H. Li, X. Yin, P. Wang, J. Lu, L. Zhang, Chem. Commun. 55 (2019) 9031-9034.
DOI URL |
[43] |
X. Li, K. Zhou, J. Zhou, J. Shen, M. Ye, J. Mater. Sci. Technol. 34 (2018) 2342-2349.
DOI URL |
[44] |
H. Yang, B. Wang, H. Li, B. Ni, K. Wang, Q. Zhang, X. Wang, Adv. Energy Mater. 8 (2018), 1801839.
DOI URL |
[45] |
J. Li, Z. Liu, Q. Zhang, Y. Cheng, B. Zhao, S. Dai, H.-H. Wu, K. Zhang, D. Ding, Y. Wu, M. Liu, M.S. Wang, Nano Energy 57 (2019) 22-33.
DOI URL |
[46] |
R.M. Yuan, H.J. Li, X.M. Yin, H.Q. Wang, J.H. Lu, L.L. Zhang, Electrochim. Acta 273 (2018) 502-510.
DOI URL |
[47] |
H.-S. Kim, J.B. Cook, H. Lin, Jesse S. Ko, Sarah H. Tolbert, V. Ozolins, B. Dunn, Nat. Mater. 16 (2017) 454-460.
DOI URL PMID |
[48] |
G. Liu, X.-Z. Song, S. Zhang, X. Chen, S. Liu, Y. Meng, Z. Tan, J. Power Sources 465 (2020), 228239.
DOI URL |
[49] |
M. Pang, G. Long, S. Jiang, Y. Ji, W. Han, B. Wang, X. Liu, Y. Xi, D. Wang, F. Xu, Chem. Eng. J. 280 (2015) 377-384.
DOI URL |
[50] |
S. Ramesh, A. Kathalingam, K. Karuppasamy, H.-S. Kim, H.S. Kim, Compos. Part B Eng. 166 (2019) 74-85.
DOI URL |
[1] | Yang Wang, Shun Zhang, Ruizhi Wu, Nodir Turakhodjaev, Legan Hou, Jinghuai Zhang, Sergey Betsofen. Coarsening kinetics and strengthening mechanisms of core-shell nanoscale precipitates in Al-Li-Yb-Er-Sc-Zr alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 197-203. |
[2] | Xu Bao, Wei-Bin Zhang, Qiang Zhang, Lun Zhang, Xue-Jing Ma, Jianping Long. Interlayer material technology of manganese phosphate toward and beyond electrochemical pseudocapacitance over energy storage application [J]. J. Mater. Sci. Technol., 2021, 71(0): 109-128. |
[3] | Qinchuan He, Hejun Li, Xuemin Yin, Jinhua Lu. Effects of PyC shell thickness on the microstructure, ablation resistance of SiCnws/PyC-C/C-ZrC-SiC composites [J]. J. Mater. Sci. Technol., 2021, 71(0): 55-66. |
[4] | Jiashen Meng, Ziang Liu, Xiong Liu, Wei Yang, Lianzhou Wang, Yan Li, Yuan-Cheng Cao, Xingcai Zhang, Liqiang Mai. Scalable fabrication and active site identification of MOF shell-derived nitrogen-doped carbon hollow frameworks for oxygen reduction [J]. J. Mater. Sci. Technol., 2021, 66(0): 186-192. |
[5] | Yanrong Lv, Chao Han, Ye Zhu, Tianao Zhang, Shuo Yao, Zhangxing He, Lei Dai, Ling Wang. Recent advances in metals and metal oxides as catalysts for vanadium redox flow battery: Properties, structures, and perspectives [J]. J. Mater. Sci. Technol., 2021, 75(0): 96-109. |
[6] | Liuyang Cao, Xue Cheng, Hongjie Xu, Guoqin Cao, Junhua Hu, Guosheng Shao. Planar Li growth on Li21Si5 modified Li metal for the stabilization of anode [J]. J. Mater. Sci. Technol., 2021, 76(0): 156-165. |
[7] | Xuemin Yin, Hejun Li, Ruimei Yuan, Jinhua Lu. NiCoLDH nanosheets grown on MOF-derived Co3O4 triangle nanosheet arrays for high-performance supercapacitor [J]. J. Mater. Sci. Technol., 2021, 62(0): 60-69. |
[8] | Baoquan Wan, Haiyu Li, Yunhui Xiao, Zhongbin Pan, Qiwei Zhang. Improved breakdown strength and energy density of polyimide composites by interface engineering between BN and BaTiO3 fibers [J]. J. Mater. Sci. Technol., 2021, 74(0): 1-10. |
[9] | Yongliang Li, Hua Yuan, Yanbing Chen, Xiaoyu Wei, Kunyan Sui, Yeqiang Tan. Application and exploration of nanofibrous strategy in electrode design [J]. J. Mater. Sci. Technol., 2021, 74(0): 189-202. |
[10] | Peng Chen, Shilin Zeng, Yunliang Zhao, Shichang Kang, Tingting Zhang, Shaoxian Song. Synthesis of unique-morphological hollow microspheres of MoS2@montmorillonite nanosheets for the enhancement of photocatalytic activity and cycle stability [J]. J. Mater. Sci. Technol., 2020, 41(0): 88-97. |
[11] | Ruifang Gao, Jin Li, Rui Shi, Yang Zhang, Fuzhou Ouyang, Ting Zhang, Lihua Hu, Guoqiang Xu, Jian Liu. Highly sensitive detection of phosphopeptides with superparamagnetic Fe3O4@mZrO2 core-shell microspheres-assisted mass spectrometry [J]. J. Mater. Sci. Technol., 2020, 59(0): 234-242. |
[12] | Yinli Peng, Nan Wang. Effect of phase-separated patterns on the formation of core-shell structure [J]. J. Mater. Sci. Technol., 2020, 38(0): 64-72. |
[13] | Wang Zhongren, Gao Quanbin, Lv Peng, Li Xiuwan, Wang Xinghui, Qu Baihua. Facile fabrication of core-shell Ni3Se2/Ni nanofoams composites for lithium ion battery anodes [J]. J. Mater. Sci. Technol., 2020, 38(0): 119-124. |
[14] | Han Wu, Jingdong Guo, De’an Yang. Facile autoreduction synthesis of core-shell Bi-Bi2O3/CNT with 3-dimensional neural network structure for high-rate performance supercapacitor [J]. J. Mater. Sci. Technol., 2020, 47(0): 169-176. |
[15] | Zhongliao Wang, Yifan Chen, Liuyang Zhang, Bei Cheng, Jiaguo Yu, Jiajie Fan. Step-scheme CdS/TiO2 nanocomposite hollow microsphere with enhanced photocatalytic CO2 reduction activity [J]. J. Mater. Sci. Technol., 2020, 56(0): 143-150. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||