J. Mater. Sci. Technol. ›› 2020, Vol. 57: 43-50.DOI: 10.1016/j.jmst.2020.03.076
• Research Article • Previous Articles Next Articles
Shuiyuan Yanga,*(), Lipeng Guoa, Xinyu Qinga, Shen Honga, Jixun Zhanga, Mingpei Lia, Cuiping Wanga, Xingjun Liua,b
Received:
2020-01-03
Accepted:
2020-03-06
Published:
2020-11-15
Online:
2020-11-20
Contact:
Shuiyuan Yang
Shuiyuan Yang, Lipeng Guo, Xinyu Qing, Shen Hong, Jixun Zhang, Mingpei Li, Cuiping Wang, Xingjun Liu. Excellent shape recovery characteristics of Cu-Al-Mn-Fe shape memory single crystal[J]. J. Mater. Sci. Technol., 2020, 57: 43-50.
Fig. 1. Abnormal grain growth, optical micrograph and reversible martensitic transformation of Cu-12.4Al-6.5Mn-3.2Fe alloy: (a) abnormal grain growth, the large-sized grain of about 56 mm was obtained only through annealing the cast alloy at 1173 K for 2 h; (b) optical micrograph of the single crystal consisted of dominant L21 parent; (c) reversible martensitic transformation of the single crystal measured by DSC test with a heating and cooling rate of 10 K min-1.
Fig. 2. Superelasticity and shape memory effect of Cu-12.4Al-6.5Mn-3.2Fe single crystal: (a) cyclic compressive stress-strain and corresponding strain-temperature curves with different deformation level; (b) reverse martensitic transformation start temperature (As) and functional characteristics depending on the deformation level.
Fig. 3. Evolution of macroscopic morphology and optical micrograph when deforming the Cu-12.4Al-6.5Mn-3.2Fe single crystal: (a) evolution of macroscopic morphology when Cu-12.4Al-6.5Mn-3.2Fe single crystal was repeatedly compressed to 7.5 %, 10 %, 12 %, 13 %, and then heated for shape recovery; (b-d) optical micrograph when Cu-12.4Al-6.5Mn-3.2Fe single crystal was deformed to 7.5 %, 10 % and 13 %, respectively. After each compression, the deformed sample was heated to 523 K for 5 min for shape recovery. The letters P and M respectively represent the L21-Cu2AlMn parent and 2H martensite.
Fig. 4. TMA curves under different pre-strains of 7.5 % (a), 8% (b), 10 % (c), 12 % (d) and 15 % (e) with a heating and cooling rate 0.1 K min-1. The black lines imply the dimension change of the deformed samples. The red lines represent the “jumping” distance of the recovered samples resulted from the instantaneous and complete shape recovery process when a critical temperature reaches as shown by the red arrows.
Alloy composition | SE (%) | SME (%) | References |
---|---|---|---|
Cu-12.4Al-6.5Mn-3.2Fe | 5.8? | 8.8? | This work |
Fe40.95Ni28Co17Al11.5Ta2.5B0.05 | 13.5 | - | [ |
Ni50Ti50 | 7.3 | - | [ |
Fe43.5Mn34Al15Ni7.5 | 9.5?/5.2 | - | [ |
Cu71.9Al16.6Mn9.3Ni2B0.2 | 7.5 | - | [ |
Cu71.6Al17.0Mn11.4 | 6/4.5? | - | [ |
Cu68.4Al27.8Ni3.8 | 8.6? | - | [ |
Cu67.9Zn16.1Al16 | 8.5? | - | [ |
Cu67.11Zn24.25Al8.57Zr0.07 | 4.5 | - | [ |
Zu45Au30Cu25 | 8.0 | - | [ |
Co40Ni32Al28 | 6.3 | - | [ |
Ni51Fe22Ga27 | 6.2 | - | [ |
Ti64Zr24Nb10Sn2 | 6.0 | - | [ |
Fe69Mn30Si1 | - | 9.0? | [ |
Fe60.3Mn20.2Si5.6Cr8.9Ni5.0 | - | 7.6 | [ |
Ni-Ti-based | - | 9.0 | [ |
Cu-based | - | 7.0 | [ |
Ti50Pd50 | - | 8.8 | [ |
U86Nb14 | - | 6.8 | [ |
Ni54Mn25Ga21 | - | 6.1? | [ |
Ti50Ni20Pd30 | - | 5.4 | [ |
Ti50.3Ni34.7Hf15 | - | 3.3 | [ |
Table 1 Superelasticity strain (SE) and shape memory effect (SME) in various shape memory alloys (SMAs). The symbol (?) indicates the properties are obtained in single crystals.
Alloy composition | SE (%) | SME (%) | References |
---|---|---|---|
Cu-12.4Al-6.5Mn-3.2Fe | 5.8? | 8.8? | This work |
Fe40.95Ni28Co17Al11.5Ta2.5B0.05 | 13.5 | - | [ |
Ni50Ti50 | 7.3 | - | [ |
Fe43.5Mn34Al15Ni7.5 | 9.5?/5.2 | - | [ |
Cu71.9Al16.6Mn9.3Ni2B0.2 | 7.5 | - | [ |
Cu71.6Al17.0Mn11.4 | 6/4.5? | - | [ |
Cu68.4Al27.8Ni3.8 | 8.6? | - | [ |
Cu67.9Zn16.1Al16 | 8.5? | - | [ |
Cu67.11Zn24.25Al8.57Zr0.07 | 4.5 | - | [ |
Zu45Au30Cu25 | 8.0 | - | [ |
Co40Ni32Al28 | 6.3 | - | [ |
Ni51Fe22Ga27 | 6.2 | - | [ |
Ti64Zr24Nb10Sn2 | 6.0 | - | [ |
Fe69Mn30Si1 | - | 9.0? | [ |
Fe60.3Mn20.2Si5.6Cr8.9Ni5.0 | - | 7.6 | [ |
Ni-Ti-based | - | 9.0 | [ |
Cu-based | - | 7.0 | [ |
Ti50Pd50 | - | 8.8 | [ |
U86Nb14 | - | 6.8 | [ |
Ni54Mn25Ga21 | - | 6.1? | [ |
Ti50Ni20Pd30 | - | 5.4 | [ |
Ti50.3Ni34.7Hf15 | - | 3.3 | [ |
Fig. 6. Microstructural evolution of Cu-12.4Al-6.5Mn-3.2Fe single crystal before and after the deformation, as well as after heating for shape recovery: (a) bright-field (BF) image and the SADP of L21 parent and (b) high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) image the alloy before deformation. (c-f) Microstructures of the alloy was deformed to the deformation of 7.5 % and unloading: (c) BF image and the SADP of 2H martensite, (d) dark-field (DF) image of 2H martensite and the SADP of L21 parent, (e) DF image of L21 parent, (f) magnifying BF image of the red dashed frame in (c), showing the distortions of the interfaces among the parent, martensite and nanoparticles. (g, h) Microstructures of the deformed alloy after heating to 523 K for 5 min for shape recovery: (g) BF image and the SADP of L21 parent, (h) HAADF-STEM image.
Fig. 7. Compressive stress-strain curves of Cu-12.4Al-6.5Mn-3.2Fe single crystal at room temperature with a constant pre-strain of 8% during fifty thermomechanical cycles. During each cycle, the sample was deformed to 8% and unloading, and followed by heating for shape recovery. A perfect shape memory effect of about 6% was obtained for each time.
Fig. 8. Microstructures of Cu-12.4Al-6.5Mn-3.2Fe single crystal deformed to 10 % and unloading: (a) TEM bright-field (BF) image of bcc β(FeAl) nanoparticles and 2H martensite; (b) TEM dark-field (DF) image of bcc β(FeAl); (c) DF image of 2H martensite; (d) BF image of 2H martensite and corresponding SAED pattern (inset).
Fig. 9. Schematic illustration of the pinning mechanism due to the presence of nanoparticles related to the superelasticity and shape memory effect resulted from the stabilization of the stress-induced martensite in the present Cu-Al-Mn-Fe single crystal. The black dots represent the parent, and the red dots represent the nanoparticles.
[1] | K. Otsuka, C.M. Wayman (Eds.), Shape Memory Materials, Cambridge University Press, Cambridge, 1998, pp. 1-48. |
[2] | H.F. Li, F.L. Nie, Y.F. Zheng, Y. Cheng, S.C. Wei, R.Z. Valiev, J. Mater. Sci. Technol. 35(2019) 2156-2162. |
[3] | Z.W. Xiong, Z.H. Li, Z. Sun, S.J. Hao, Y. Yang, M. Li, C.H. Song, P. Qiu, L.S. Cui, J. Mater. Sci. Technol. 35(2019) 2238-2242. |
[4] | Y.X. Tong, A. Shuitcev, Y.F. Zheng, Adv. Eng. Mater. 22(2020), 201900496. |
[5] | S. Wang, K. Tsuchiya, L. Wang, M. Umemoto, J. Mater. Sci. Technol. 26(2010) 936-940. |
[6] | H.J. Jiang, S.S. Cao, C.B. Ke, X. Ma, X.P. Zhang, J. Mater. Sci. Technol. 29(2013), 885-862. |
[7] | Y.N. Liu, I. Houver, H. Xiang, L. Bataillard, S. Miyazaki, Metall. Mater. Trans. A 30 (1999) 1275-1282. |
[8] | R. Dasgupta, J. Mater. Res. 29(2014) 1681-1698. |
[9] | R. Kainuma, S. Takahashi, K. Ishida, Metall. Mater. Trans. A 27 (1996) 2187-2195. |
[10] | K. Otsuka, C.M. Wayman, K. Nakai, H. Sakamoto, K. Shimizu, Acta Metall 24 (1976) 207-226. |
[11] | T. Saburi, Y. Inada, S. Nenno, N. Hori, J. Phys. Colloid Chem. 43 (C4) (1982) 633-638. |
[12] |
T. Omori, T. Kusama, S. Kawata, I. Ohnuma, Y. Sutou, Y. Araki, K. Ishida, R. Kainuma, Science 341 (2013) 1500-1502.
URL PMID |
[13] |
T. Kusama, T. Omori, T. Saito, S. Kise, T. Tanaka, Y. Araki, R. Kainuma, Nat. Commun. 8(2017) 354.
URL PMID |
[14] | Y. Sutou, T. Omori, K. Yamauchi, N. Ono, R. Kainuma, K. Ishida, Acta Mater. 53(2005) 4121-4133. |
[15] |
Y.H. Wen, H.B. Peng, D. Raabe, I. Gutierrez-Urrutia, J. Chen, Y.Y. Du, Nat. Commun. 5(2014) 4964.
URL PMID |
[16] |
T. Omori, K. Ando, M. Okano, X. Xu, Y. Tanaka, I. Ohnuma, R. Kainuma, K. Ishida, Science 333 (2011) 68-71.
DOI URL PMID |
[17] | Y. Tanaka, Y. Himuro, R. Kainuma, Y. Sutou, T. Omori, K. Ishida, Science 327 (2010) 1488-1490. |
[18] | T. Omori, H. Iwaizako, R. Kainuma, Mater. Des. 101(2016) 263-269. |
[19] | M. Vollmer, P. Krooß, I. Karaman, T. Niendorf, Scr. Mater. 126(2017) 20-23. |
[20] | S. Miyazaki, K. Otsuka, Y. Suzuki, Scr. Metall. Mater. 15(1981) 287-292. |
[21] | T. Takagi, Y. Sutou, R. Kainuma, K. Yamauchi, K. Ishida, J. Biomed. Mater. Res. Part B Appl. Biomater. 76(2006) 179-183. |
[22] | X.M. He, L.J. Rong, Scr. Mater. 51(2004) 7-11. |
[23] |
S.Y. Yang, T. Omori, C.P. Wang, Y. Liu, M. Nagasako, J.J. Ruan, R. Kainuma, K. Ishida, X.J. Liu, Sci. Rep. 6(2016) 21754.
DOI URL PMID |
[24] | C. Picornell, J. Pons, E. Cesari, Acta Mater. 49(2001) 4221-4230. |
[25] | V.I. Nikolaev, P.N. Yakushev, G.A. Malygin, A.I. Averkin, A.V. Chikiryaka, S.A. Pulnev, Technol. Phys. Lett. 40(2014) 123-125. |
[26] | V.I. Nikolaev, P.N. Yakushev, G.A. Malygin, S.A. Pul’nev, Technol. Phys. Lett. 36(2010) 914-917. |
[27] | S.Y. Yang, J.X. Zhang, M.Y. Chi, Y.H. Wen, X.R. Chen, C.P. Wang, X.J. Liu, Materialia 5 (2019), 100200. |
[28] | S.Y. Yang, J.X. Zhang, M.Y. Chi, M.J. Yang, C.P. Wang, X.J. Liu, Scr. Mater. 165(2019) 20-24. |
[29] | S.Y. Yang, J.X. Zhang, X.R. Chen, M.Y. Chi, C.P. Wang, X.J. Liu, Mater. Sci. Eng. A 749 (2019) 249-254. |
[30] | S.Y. Yang, M.Y. Chi, J.X. Zhang, Y. Lu, Y.X. Huang, C.P. Wang, X.J. Liu, Smart Mater. Struct. 28(2019), 055015. |
[31] | M. Somerday, R.J. Comstock, J.A. Wert, Metall. Mater. Trans. A 28 (1997) 2335-2341. |
[32] |
Y.T. Song, X. Chen, V. Dabade, T.W. Shield, R.D. James, Nature 502 (2013) 85-88.
URL PMID |
[33] | Y. Tanaka, K. Oikawa, Y. Sutou, T. Omori, R. Kainuma, K. Ishida, Mater. Sci. Eng.A 438-440(2006) 1054-1060. |
[34] | Y. Sutou, N. Kamiya, T. Omori, R. Kainuma, K. Ishida, K. Oikawa, Appl. Phys. Lett. 84(2004) 1275-1277. |
[35] | L.L. Pavón, H.Y. Kim, H. Hosoda, S. Miyazaki, Scr. Mater. 95(2015) 46-49. |
[36] | A. Sato, E. Chishima, K. Soma, T. Mori, Acta Metall. 30(1982) 1177-1183. |
[37] | K. Otsuka, K. Oda, Y. Ueno, M. Piao, Scr. Metall. Mater 29 (1993) 1355-1358. |
[38] | R.A. Vandermeer, J.C. Ogle, W.G. Northcutt, Metall. Trans. A 12 (1981) 733-741. |
[39] | H.B. Xu, Y.Q. Ma, C.B. Jiang, Appl. Phys. Lett. 82(2003) 3206-3208. |
[40] | D. Golberg, Y. Xu, Y. Murakami, K. Otsuka, T. Ueki, H. Horikawa, Mater. Lett. 22(1995) 241-244. |
[41] | D. Golberg, Y. Xu, Y. Murakami, S. Morito, K. Otsuka, Intermetallics 3 (1995) 35-46. |
[42] | A. Evirgen, I. Karaman, R. Santamarta, J. Pons, R.D. Noebe, Acta Mater. 83(2015) 48-60. |
[43] | Y. Liu, D. Favier, Acta Mater. 48(2000) 3489-3499. |
[44] | L. Seiner, H. Šittner, P. Sedlák, P. Tyc, O. Kadeřávek, Int. J. Plast. 111(2018) 53-71. |
[1] | Longyan Hou, Yiyong Wu, Debin Shan, Bin Guo, Yingying Zong. Dose rate effects on shape memory epoxy resin during 1 MeV electron irradiation in air [J]. J. Mater. Sci. Technol., 2021, 67(0): 61-69. |
[2] | Qian Wu, Xiangmei Liu, Bo Li, Lei Tan, Yong Han, Zhaoyang Li, Yanqin Liang, Zhenduo Cui, Shengli Zhu, Shuilin Wu, Yufeng Zheng. Eco-friendly and degradable red phosphorus nanoparticles for rapid microbial sterilization under visible light [J]. J. Mater. Sci. Technol., 2021, 67(0): 70-79. |
[3] | Dong Zhao, Xiaoyang Wang, Ling Chang, Wenli Pei, Chun Wu, Fei Wang, Luran Zhang, Jianjun Wang, Qiang Wang. Synthesis of super-fine L10-FePt nanoparticles with high ordering degree by two-step sintering under high magnetic field [J]. J. Mater. Sci. Technol., 2021, 73(0): 178-185. |
[4] | Hai-Le Yan, Hao-Xuan Liu, Ying Zhao, Nan Jia, Jing Bai, Bo Yang, Zongbin Li, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Impact of B alloying on ductility and phase transition in the Ni-Mn-based magnetic shape memory alloys: Insights from first-principles calculation [J]. J. Mater. Sci. Technol., 2021, 74(0): 27-34. |
[5] | Wenjuan Wang, Yan Zhao, Yongguang Zhang, Ning Liu, Zhumabay Bakenov. Nickel embedded porous macrocellular carbon derived from popcorn as sulfur host for high-performance lithium-sulfur batteries [J]. J. Mater. Sci. Technol., 2021, 74(0): 69-77. |
[6] | Xiangguang Kong, Ying Yang, Shiyu Guo, Ran Li, Bo Feng, Daqiang Jiang, Meng Li, Changfeng Chen, Lishan Cui, Shijie Hao. Grain-size gradient NiTi ribbons with multiple-step shape transition prepared by melt-spinning [J]. J. Mater. Sci. Technol., 2021, 71(0): 163-168. |
[7] | Le Thai Duy, Ji-Ye Baek, Ye-Ji Mun, Hyungtak Seo. Patternable production of SrTiO3 nanoparticles using 1-W laser directly on flexible humidity sensor platform based on ITO/SrTiO3/CNT [J]. J. Mater. Sci. Technol., 2021, 71(0): 186-194. |
[8] | Jing Li, Zhenqiang Feng, Ning Gu, Fang Yang. Superparamagnetic iron oxide nanoparticles assembled magnetic nanobubbles and their application for neural stem cells labeling [J]. J. Mater. Sci. Technol., 2021, 63(0): 124-132. |
[9] | Mi Wu, Wen Liu, Jinrong Yao, Zhengzhong Shao, Xin Chen. Silk microfibrous mats with long-lasting antimicrobial function [J]. J. Mater. Sci. Technol., 2021, 63(0): 203-209. |
[10] | Jie Liu, Li Li, Run Zhang, Zhi Ping Xu. Development of CaP nanocomposites as photothermal actuators for doxorubicin delivery to enhance breast cancer treatment [J]. J. Mater. Sci. Technol., 2021, 63(0): 73-80. |
[11] | Wang Yang, Bo Jiang, Zhihui Liu, Rui Li, Liqiang Hou, Zhengxuan Li, Yongli Duan, Xingru Yan, Fan Yang, Yongfeng Li. Magnetic coupling engineered porous dielectric carbon within ultralow filler loading toward tunable and high-performance microwave absorption [J]. J. Mater. Sci. Technol., 2021, 70(0): 214-223. |
[12] | Huabei Peng, Dian Wang, Qi Liao, Yuhua Wen. Degeneration and rejuvenation of shape memory effect associated with the precipitation of coherent nano-particles in a Co-Ni-Si shape memory alloy [J]. J. Mater. Sci. Technol., 2021, 76(0): 150-155. |
[13] | Mengting Cao, Fengli Yang, Quan Zhang, Juhua Zhang, Lu Zhang, Lingfeng Li, Xiaohao Wang, Wei-Lin Dai. Facile construction of highly efficient MOF-based Pd@UiO-66-NH2@ZnIn2S4 flower-like nanocomposites for visible-light-driven photocatalytic hydrogen production [J]. J. Mater. Sci. Technol., 2021, 76(0): 189-199. |
[14] | Tianyan Zhong, Huangxin Li, Tianming Zhao, Hongye Guan, Lili Xing, Xinyu Xue. Self-powered/self-cleaned atmosphere monitoring system from combining hydrovoltaic, gas sensing and photocatalytic effects of TiO2 nanoparticles [J]. J. Mater. Sci. Technol., 2021, 76(0): 33-40. |
[15] | Kecheng Quan, Zexin Zhang, Yijin Ren, Henk J. Busscher, Henny C. van der Mei, Brandon W. Peterson. Possibilities and impossibilities of magnetic nanoparticle use in the control of infectious biofilms [J]. J. Mater. Sci. Technol., 2021, 69(0): 69-78. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||