J. Mater. Sci. Technol. ›› 2020, Vol. 53: 192-199.DOI: 10.1016/j.jmst.2020.04.024
• Research Article • Previous Articles
William Yi Wanga, Bin Gana,b,c, Deye Lind, Jun Wanga, Yiguang Wanga, Bin Tanga, Hongchao Koua, Shunli Shange, Yi Wange, Xingyu Gaod, Haifeng Songd, Xidong Huif, Laszlo J. Kecskesg, Zhenhai Xiaa, Karin A. Dahmenh, Peter K. Liawi, Jinshan Lia,*(
), Zi-Kui Liue
Received:2019-12-28
Revised:2020-02-12
Accepted:2020-02-20
Published:2020-09-15
Online:2020-09-21
Contact:
Jinshan Li
William Yi Wang, Bin Gan, Deye Lin, Jun Wang, Yiguang Wang, Bin Tang, Hongchao Kou, Shunli Shang, Yi Wang, Xingyu Gao, Haifeng Song, Xidong Hui, Laszlo J. Kecskes, Zhenhai Xia, Karin A. Dahmen, Peter K. Liaw, Jinshan Li, Zi-Kui Liu. High-throughput investigations of configurational-transformation-dominated serrations in CuZr/Cu nanolaminates[J]. J. Mater. Sci. Technol., 2020, 53: 192-199.
Fig. 1. High-throughput compression tests of CuZr/Cu nanopillars with a ~600 nm diameter: (a) SEM images of nanopillars with different views; (b) stress-displacement curves of the tested samples at a strain rate of 1 × 10-3 s-1. The top and side views of the nanopillars before compression are presented in the first row of (a) while the side views of nanopillars after compression are listed in the other rows.
Fig. 2. Microstructures of the CuZr/Cu nanolaminates before and after micro-compression: (a, b) TEM images of the multilayers of the as-fabricated CuZr/Cu nanolaminates; (c-e) High-resolution TEM images and composition mapping of the sample after micro-compression. The CuZr/Cu NLs consist of 100-nm amorphous CuZr and 10-nm nanocrystalline Cu layers. The ellipses in c highlight the ordering clusters in the amorphous CuZr layer.
Fig. 3. Configurational transformation dominated serrations of CuZr/Cu NLs under strain rate of 1 × 108 s-1: (a) hydrostatic stress versus axial strain along the z direction of the polycrystalline Cu, amorphous CuZr, and the CuZr/Cu NLs; (b) Von-Mises shear-strain distributions for the CuZr/Cu NLs calculated by MD simulations. The three independent structures/supercells shown are different in their Cu polycrystalline structures since only one amorphous CuZr layer from ab initio MD calculations are utilized here. The BGR gradient colors in (b) correspond to various levels of Von-Mises shear strains.
Fig. 4. Snapshots of configurations corresponding to the stress-strain curve of the CuZr/Cu NLs under a strain rate of 1 × 108 s-1. The HCP-type structures that are produced to create a deformation fault (2 layers combined together) and twin boundaries (the isolated single layer), BCC-type ordering at grain boundaries of Cu, and amorphous CuZr, and atoms constructing the Voronoi polyhedra of CuZr are selected through deleting the FCC matrix of the polycrystalline Cu and disordered structures of the amorphous CuZr. The BGR gradient colors are utilized to identify the atomic spatial coordinates.
Fig. 5. Various views of the configurational transformations of the CuZr/Cu NLs under strain rates of 1 × 108 s-1 and 1 × 109 s-1: (a) the resultant HCP-type structure for deformation faults (2 layers combined together) and twin boundaries (the isolated single layer) in red, BCC-type ordering at Cu grain boundaries and the amorphous CuZr in blue, and atoms constructing the Voronoi polyhedra of CuZr in green; (b) an enlarged region of the nanocrystalline Cu shown in (a); (c) the evolution of the disordered structures in the nanocrystalline Cu, trailing the edge of the stacking faults and the (partial) dislocations shown with the BGR gradient; (d) BGR view of the HCP and BCC regions, and the Voronoi polyhedra discussed in (a).
| [1] |
Y. Zhang, J.P. Liu, S.Y. Chen, X. Xie, P.K. Liaw, K.A. Dahmen, J.W. Qiao, Y.L. Wang, Prog. Mater. Sci. 90 (2017) 358-460.
DOI URL |
| [2] |
J. Ding, S. Patinet, M.L. Falk, Y. Cheng, E. Ma, Proc. Natl. Acad. Sci. U. S. A. 111 (2014) 14052-14056.
DOI URL PMID |
| [3] | W.Y. Wang, S.L. Shang, Y. Wang, F. Han, K.A. Darling, Y. Wu, X. Xie, O.N. Senkov, J. Li, X.D. Hui, K.A. Dahmen, P.K. Liaw, L.J. Kecskes, Z.K. Liu, NPJComput. Mater. 3 (2017) 23. |
| [4] |
A.M. Beese, Z. Wang, A.D. Stoica, D. Ma, Nat. Commun. 9 (2018) 2083.
DOI URL PMID |
| [5] |
J.J. Li, J.W. Qiao, K.A. Dahmen, W.M. Yang, B.L. Shen, M.W. Chen, J. Iron Steel Res. Int. 24 (2017) 366-371.
DOI URL |
| [6] |
J.J. Li, J.F. Fan, Z. Wang, Y.C. Wu, K.A. Dahmen, J.W. Qiao, Intermetallics 116 (2020), 106637.
DOI URL |
| [7] |
N. Wang, J. Ding, F. Yan, M. Asta, R.O. Ritchie, L. Li, NPJ Comput. Mater. 4 (2018) 19.
DOI URL |
| [8] | A. Widmer-Cooper, H. Perry, P. Harrowell, D.R. Reichman, Nat. Phys. 4 (2008) 711-715. |
| [9] |
M. Chen, A. Inoue, W. Zhang, T. Sakurai, Phys. Rev. Lett. 96 (2006), 245502.
URL PMID |
| [10] |
J.J. Kim, Y. Choi, S. Suresh, A.S. Argon, Science 295 (2002) 654-657.
URL PMID |
| [11] | Y. Wang, J. Zhang, K. Wu, G. Liu, D. Kiener, J. Sun, Mater. Res. Lett. 6 (2018) 22-28. |
| [12] |
S. Pauly, S. Gorantla, G. Wang, U. Kuhn, J. Eckert, Nat. Mater. 9 (2010) 473-477.
DOI URL PMID |
| [13] |
J.Y. Zhang, G. Liu, J. Sun, Sci. Rep. 3 (2013) 2324.
DOI URL PMID |
| [14] |
M. Mosayebi, P. Ilg, A. Widmer-Cooper, E. Del Gado, Phys. Rev. Lett. 112 (2014), 105503.
DOI URL PMID |
| [15] |
E. Ma, J. Ding, Mater. Today 19 (2016) 568-579.
DOI URL |
| [16] | K.V. Reddy, C. Deng, S. Pal, Acta Mater. 164 (2019) 347-361. |
| [17] | M.Y. Tong, C.K.C. Lieou, I.J. Beyerlein, Phys. Rev. Mater. 3 (2019), 073602. |
| [18] | Y.W. Luan, C.H. Li, X.J. Han, J.G. Li, Mol. Simul. 43 (2017) 1116-1124. |
| [19] |
W. Guo, E.A. Jaegle, P.P. Choi, J. Yao, A. Kostka, J.M. Schneider, D. Raabe, Phys. Rev. Lett. 113 (2014), 035501.
URL PMID |
| [20] |
Y.Q. Wang, J.Y. Zhang, X.Q. Liang, K. Wu, G. Liu, J. Sun, Acta Mater. 95 (2015) 132-144.
DOI URL |
| [21] | W. Guo, B. Gan, J.M. Molina-Aldareguia, J.D. Poplawsky, D. Raabe, Scr. Mater. 110 (2016) 28-32. |
| [22] | Y.Q. Cheng, E. Ma, Prog. Mater. Sci. 56 (2011) 379-473. |
| [23] | X.L. Ma, C.X. Huang, W.Z. Xu, H. Zhou, X.L. Wu, Y.T. Zhu, Scr. Mater. 103 (2015) 57-60. |
| [24] | J. Qiao, H. Jia, P.K. Liaw, Mater. Sci. Eng. R 100 (2016) 1-69. |
| [25] | P.A. Hirel, Comput. Phys. Commun. 197 (2015) 212-219. |
| [26] | S. Nose, J. Chem. Phys. 81 (1984) 511-519. |
| [27] | W.G. Hoover, Phys. Rev. A 34 (1986) 2499-2500. |
| [28] | S. Plimpton, J. Comput. Phys. 117 (1995) 1-19. |
| [29] |
M.I. Mendelev, M.J. Kramer, R.T. Ott, D.J. Sordelet, D. Yagodin, P. Popel, Philos. Mag. 89 (2009) 967-987.
DOI URL |
| [30] | A. Stukowski, Model. Simul. Mater. Sci. 20 (2012), 045021. |
| [31] | F. Shimizu, S. Ogata, J. Li, Mater. Trans. 48 (2007) 2923-2927. |
| [32] | A.L. Greer, Y.Q. Cheng, E. Ma, Mater. Sci. Eng. R 74 (2013) 71-132. |
| [33] |
Y. Wang, J. Li, A.V. Hamza, T.W. Jr Barbee, Proc. Natl. Acad. Sci. U. S. A. 104 (2007) 11155-11160.
DOI URL PMID |
| [34] |
F. Zhu, A. Hirata, P. Liu, S. Song, Y. Tian, J. Han, T. Fujita, M. Chen, Phys. Rev. Lett. 119 (2017), 215501.
DOI URL PMID |
| [35] | A. Pasturel, N. Jakse, NPJ Comput. Mater. 3 (2017) 33. |
| [36] | R.S. Berry, B.M. Smirnov, Phys. Rep. 527 (2013) 205-250. |
| [37] |
E.D. Cubuk, R.J.S. Ivancic, S.S. Schoenholz, D.J. Strickland, A. Basu, Z.S. Davidson, J. Fontaine, J.L. Hor, Y.R. Huang, Y. Jiang, N.C. Keim, K.D. Koshigan, J.A. Lefever, T. Liu, X.G. Ma, D.J. Magagnosc, E. Morrow, C.P. Ortiz, J.M. Rieser, A. Shavit, T. Still, Y. Xu, Y. Zhang, K.N. Nordstrom, P.E. Arratia, R.W. Carpick, D.J. Durian, Z. Fakhraai, D.J. Jerolmack, D. Lee, J. Li, R. Riggleman, K.T. Turner, A.G. Yodh, D.S. Gianola, A.J. Liu, Science 358 (2017) 1033-1037.
DOI URL PMID |
| [38] |
P.N.H. Nakashima, A.E. Smith, J. Etheridge, B.C. Muddle, Science 331 (2011) 1583-1586.
DOI URL PMID |
| [39] |
Y. Wang, W.Y. Wang, L.Q. Chen, Z.K. Liu, J. Comput. Chem. 36 (2015) 1008-1014.
DOI URL PMID |
| [40] | W.Y. Wang, S.L. Shang, Y. Wang, K.A. Darling, S.N. Mathaudhu, X. Hui, Z.K. Liu, Acta Mater. 97 (2015) 75-85. |
| [41] | W.Y. Wang, B. Tang, S.L. Shang, J. Wang, S. Li, Y. Wang, J. Zhu, S. Wei, J. Wang, K.A. Darling, S.N. Mathaudhu, Y. Wang, Y. Ren, X.D. Hui, L.J. Kecskes, J. Li, Z.K. Liu, Acta Mater. 170 (2019) 231-239. |
| [42] | B. Arman, C. Brandl, S.N. Luo, T.C. Germann, A. Misra, T. Cagin, J. Appl. Phys. 110 (2011), 043539. |
| [43] | Y. Cui, Y. Shibutani, S. Li, P. Huang, F. Wang, J. Alloys Compd. 693 (2017) 285-290. |
| [44] | H.Y. Song, J.J. Xu, Y.G. Zhang, S. Li, D.H. Wang, Y.L. Li, Mater. Des. 127 (2017) 173-182. |
| [45] | E. Alishahi, C. Deng, Comput. Mater. Sci. 141 (2018) 375-387. |
| [46] | L. Sun, X. He, J. Lu, NPJ Comput. Mater. 4 (2018) 6. |
| [47] |
Z.J. Wang, Q.J. Li, Y. Li, L.C. Huang, L. Lu, M. Dao, J. Li, E. Ma, S. Suresh, Z.W. Shan, Nat. Commun. 8 (2017) 1108.
DOI URL PMID |
| [48] |
T.G. Nieh, J. Wadsworth, Intermetallics 16 (2008) 1156-1159.
DOI URL |
| [49] |
J.Y. Zhang, G. Liu, J. Sun, Acta Mater. 66 (2014) 22-31.
DOI URL |
| [50] |
H.B. Yu, W.H. Wang, K. Samwer, Mater. Today 16 (2013) 183-191.
DOI URL |
| [51] |
I.J. Beyerlein, J.R. Mayeur, S. Zheng, N.A. Mara, J. Wang, A. Misra, Proc. Natl. Acad. Sci. U. S. A. 111 (2014) 4386-4390.
DOI URL PMID |
| [52] |
M.C. Liu, J.C. Huang, Y.T. Fong, S.P. Ju, X.H. Du, H.J. Pei, T.G. Nieh, Acta Mater. 61 (2013) 3304-3313.
DOI URL |
| [53] |
Q. Pan, H. Zhou, Q. Lu, H. Gao, L. Lu, Nature 551 (2017) 214.
URL PMID |
| [1] | L. Deng, K. Kosiba, R. Limbach, L. Wondraczek, U. Kühn, S. Pauly. Plastic deformation of a Zr-based bulk metallic glass fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2021, 60(0): 139-146. |
| [2] | Zhuwei Lv, Chenchen Yuan, Haibo Ke, Baolong Shen. Defects activation in CoFe-based metallic glasses during creep deformation [J]. J. Mater. Sci. Technol., 2021, 69(0): 42-47. |
| [3] | M.C. Ri, D.W. Ding, Y.H. Sun, W.H. Wang. Microstructure change in Fe-based metallic glass and nanocrystalline alloy induced by liquid nitrogen treatment [J]. J. Mater. Sci. Technol., 2021, 69(0): 1-6. |
| [4] | Hanxun Wang, Baichun Hu, Zisen Gao, Fengjiao Zhang, Jian Wang. Emerging role of graphene oxide as sorbent for pesticides adsorption: Experimental observations analyzed by molecular modeling [J]. J. Mater. Sci. Technol., 2021, 63(0): 192-202. |
| [5] | D.X. Han, L. Zhao, S.H. Chen, G. Wang, K.C. Chan. Critical transitions in the shape morphing of kirigami metallic glass [J]. J. Mater. Sci. Technol., 2021, 61(0): 204-212. |
| [6] | Fu-Zhi Dai, Yinjie Sun, Bo Wen, Huimin Xiang, Yanchun Zhou. Temperature Dependent Thermal and Elastic Properties of High Entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B2: Molecular Dynamics Simulation by Deep Learning Potential [J]. J. Mater. Sci. Technol., 2021, 72(0): 8-15. |
| [7] | Yuan-Yun Zhao, Feng Qian, Chengliang Zhao, Chunxiao Xie, Jianguo Wang, Chuntao Chang, Yanjun Li, Lai-Chang Zhang. Facile fabrication of ultrathin freestanding nanoporous Cu and Cu-Ag films with high SERS sensitivity by dealloying Mg-Cu(Ag)-Gd metallic glasses [J]. J. Mater. Sci. Technol., 2021, 70(0): 205-213. |
| [8] | Qiaoyue Zhang, Shun-Xing Liang, Zhe Jia, Wenchang Zhang, Weimin Wang, Lai-Chang Zhang. Efficient nanostructured heterogeneous catalysts by electrochemical etching of partially crystallized Fe-based metallic glass ribbons [J]. J. Mater. Sci. Technol., 2021, 61(0): 159-168. |
| [9] | Xuehao Gao, Xin Lin, Qiaodan Yan, Zihong Wang, Xiaobin Yu, Yinghui Zhou, Yunlong Hu, Weidong Huang. Effect of Cu content on microstructure and mechanical properties of in-situ β phases reinforced Ti/Zr-based bulk metallic glass matrix composite by selective laser melting (SLM) [J]. J. Mater. Sci. Technol., 2021, 67(0): 174-185. |
| [10] | S.J. Wu, Z.Q. Liu, R.T. Qu, Z.F. Zhang. Designing metallic glasses with optimal combinations of glass-forming ability and mechanical properties [J]. J. Mater. Sci. Technol., 2021, 67(0): 254-264. |
| [11] | Jing Wang, Li You, Zhibin Li, Xiongjun Liu, Rui Li, Qing Du, Xianzhen Wang, Hui Wang, Yuan Wu, Suihe Jiang, Zhaoping Lu. Self-supporting nanoporous Ni/metallic glass composites with hierarchically porous structure for efficient hydrogen evolution reaction [J]. J. Mater. Sci. Technol., 2021, 73(0): 145-150. |
| [12] | Wenshuo Liang, Guimin Lu, Jianguo Yu. Theoretical prediction on the local structure and transport properties of molten alkali chlorides by deep potentials [J]. J. Mater. Sci. Technol., 2021, 75(0): 78-85. |
| [13] | Yufang Zhao, Jinyu Zhang, YaQiang Wang, Shenghua Wu, Xiaoqing Liang, Kai Wu, Gang Liu, Jun Sun. The metastable constituent effects on size-dependent deformation behavior of nanolaminated micropillars: Cu/FeCoCrNi vs Cu/CuZr [J]. J. Mater. Sci. Technol., 2021, 68(0): 16-29. |
| [14] | Qing Du, Xiongjun Liu, Yihuan Cao, Yuren Wen, Dongdong Xiao, Yuan Wu, Hui Wang, Zhaoping Lu. Enhanced crystallization resistance and thermal stability via suppressing the metastable superlattice phase in Ni-(Pd)-P metallic glasses [J]. J. Mater. Sci. Technol., 2020, 42(0): 203-211. |
| [15] | N. Ciftci, N. Yodoshi, S. Armstrong, L. Mädler, V. Uhlenwinkel. Processing soft ferromagnetic metallic glasses: on novel cooling strategies in gas atomization, hydrogen enhancement, and consolidation [J]. J. Mater. Sci. Technol., 2020, 59(0): 26-36. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
