J. Mater. Sci. Technol. ›› 2020, Vol. 47: 103-112.DOI: 10.1016/j.jmst.2020.01.043
• Research Article • Previous Articles Next Articles
Tao Chen, Heping Li*(
), Jing Li, Sanyuan Hu, Pin Ye, Youwei Yan*(
)
Received:2019-11-05
Accepted:2020-01-03
Published:2020-06-15
Online:2020-06-24
Contact:
Heping Li,Youwei Yan
Tao Chen, Heping Li, Jing Li, Sanyuan Hu, Pin Ye, Youwei Yan. Direct writing of silver microfiber with precise control on patterning for robust and flexible ultrahigh-performance transparent conductor[J]. J. Mater. Sci. Technol., 2020, 47: 103-112.
Fig. 1. (a, b) Schematic diagrams of direct writing of the silver fibers. (c-h) The fabricated silver patterns: parallel/straight, regular hexagon, diamond, square, semicircle-linear and sinusoidal. (c1-h1) Surface mapping of silver fibers in patterns.
Fig. 2. Schematic diagram for obtaining the Ag network under UV irradiation (a) and the obtained Ag network transparent conductor (b). (c) XRD pattern of Ag fibers. Raman spectra (d) and FT-IR (e) of the fiber, both before and after UV irradiation for 4 h. (f) TEM image of Ag fiber.
Fig. 3. (a) Transmittance of squared silver patterns with different spacings. (b) Transmittance of silver patterns in different forms: ①sinusoidal wave, ②semicircle-linear, ③hexagon, ④rhombus. (c) Sheet resistance versus optical transmittance at 550 nm for different silver patterns. (d) Comparison of optoelectronic performance between transparent conductor in this work and those reported in the literatures [[29], [30], [31], [32],35,36].
Fig. 4. Change in sheet resistance of silver pattern (a) in acidic and alkaline solution. (b) Calcining at temperature ranging from 100 to 300 °C, and (c) bending for 1000 times. The “tape test” performed on the silver pattern: (d) before sticking the tape, (e) sticking the tape, and (f) the type being peeled off.
Fig. 5. (a) I-V curves of silver pattern with different sheet resistances. (b) Temperature reached by silver pattern when different voltages were applied; cyclic electric-heating function of the silver pattern by repeatedly loading and unloading 2 V voltage for 2 cycles (c) and 1000 cycles (d). (e) Change in sheet resistance during heat fatigue test. (f) Picture of flexible silver pattern; infrared thermal image of the silver pattern after applying a voltage of 2 V (g) and bending the exothermic product into a cylindrical shape (h). (i) Temperature as a function of input power density for silver pattern with different sheet resistances.
Fig. 6. (a) Schematic diagram for assembling light-printable rewritable device; the application of silver pattern in thermotherapy: (b1) the silver pattern on a human hand, the infrared thermal image before (b2) and after (b3) applying 1.5 V voltage. (c1) Schematic diagram for its application in an extreme low temperature situation, the infrared thermal image before (c2) and after (c3) loading the voltage.
Fig. 7. Demonstration of 3D structure construction process. Schematic diagram of the process of direct-writing the first layer (a, b) and the second layer (c). (d) Enlarged view of the second layer structure. (e) Actual image of single layer structure (e1, e3) and double layer structure (e2, e4), (e1) and (e2) are grid pattern, (e3) and (e4) are wave pattern.
| [1] | V.B. Nam, J. Shin, Y. Yoon, T.T. Giang, J. Kwon, Y.D. Suh, J. Yeo, S. Hong, S.H. Ko, D. Lee, Adv. Funct. Mater. 29 (2019), 1806895. |
| [2] | X. Crispin, F.L.E. Jakobsson, A. Crispin, P.C.M. Grim, P. Andersson, A. Volodin, C. van Haesendonck, M. Van der Auweraer, W.R. Salaneck, A.M. Berggren, Chem. Mater. 18 (2006) 4354-4360. |
| [3] | J. Lee, P. Lee, H.B. Lee, S. Hong, I. Lee, J. Yeo, S.S. Lee, T. Kim, D. Lee, S.H. Ko, Adv. Funct. Mater. 23 (2013) 4171-4176. |
| [4] |
K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn, P. Kim, J.Y. Choi, B.H. Hong, Nature 457 (2009) 706-710.
DOI URL PMID |
| [5] |
S. Hu, H. Li, Z. Su, Y. Yan, Nanotechnology 28 (2017), 415301.
URL PMID |
| [6] | S. Hu, H. Li, Z. Su, Y. Yan, RSC Adv. 6 (2016) 85041-85045. |
| [7] | P. Chen, S. Hu, T. Zhou, H. Li, Y. Yan, Chem. Eng. J. 306 (2016) 139-145. |
| [8] | D. Zhang, J. Li, Z. Su, S. Hu, H. Li, Y. Yan, J. Adv. Ceram. 7 (2018) 246-255. |
| [9] | J. Song, J. Li, J. Xu, H. Zeng, Nano Lett. 14 (2014) 6298-6305. |
| [10] | P.C. Hsu, H. Wu, T.J. Carney, M.T. Mcdowell, Y. Yang, E.C. Garnett, M. Li, L. Hu, Y. Cui, ACS Nano 6 (2012) 5150-5156. |
| [11] | W. Hui, K. Desheng, R. Zhichao, H.P. Chun, W. Shuang, Y. Zongfu, T.J. Carney, H. Liangbing, F. Shanhui, C. Yi, Nat. Nanotechnol. 8 (2013) 421-425. |
| [12] |
Y. Huang, X. Bai, M. Zhou, S. Liao, Z. Yu, Y. Wang, H. Wu, Nano Lett. 16 (2016) 5846-5851.
URL PMID |
| [13] | S. Lin, X. Bai, H. Wang, H. Wang, J. Song, K. Huang, C. Wang, N. Wang, B. Li, M. Lei, Adv. Mater. 29 (2017), 1703238. |
| [14] |
B. Han, Y. Huang, R. Li, Q. Peng, J. Luo, K. Pei, A. Herczynski, K. Kempa, Z. Ren, J. Gao, Nat. Commun. 5 (2014) 5674.
URL PMID |
| [15] |
C.F. Guo, T. Sun, Q. Liu, Z. Suo, Z. Ren, Nat. Commun. 5 (2014) 3121.
URL PMID |
| [16] | Z. Jiang, K. Fukuda, X. Xu, S. Park, D. Inoue, H. Jin, M. Saito, I. Osaka, K. Takimiya, T. Someya, Adv. Mater. (2018), 1707526. |
| [17] | Y.D. Suh, S. Hong, J. Lee, H. Lee, S. Jung, J. Kwon, H. Moon, P. Won, J. Shin, J. Yeo, S.H. Ko, RSC Adv. 6 (2016) 57434-57440. |
| [18] | J. Kwon, H. Cho, H. Eom, H. Lee, Y.D. Suh, H. Moon, J. Shin, S. Hong, S.H. Ko, ACSAppl. Mater. Interface 8 (2016) 11575-11582. |
| [19] | Y.D. Suh, J. Kwon, J. Lee, H. Lee, S. Jung, D. Kim, H. Cho, J. Yeo, S.H. Ko, Adv. Electron. Mater. 2 (2016), 1600277. |
| [20] | S. Hu, T. Chen, J. Liang, H. Zhou, D. Li, H. Li, Y. Yan, J. Am. Ceram. Soc. 102 (2019) 3972-3979. |
| [21] | R. Gupta, K.D.M. Rao, K. Srivastava, A. Kumar, S. Kiruthika, G.U. Kulkarni, ACSAppl. Mater. Interface 6 (2014) 13688-13696. |
| [22] | Y.D. Suh, J. Jung, H. Lee, J. Yeo, S. Hong, P. Lee, D. L. E, S.H. Ko, J. Mater. Chem. C5 (2017) 791-798. |
| [23] | J. Sun, J. Jiang, B. Bao, S. Wang, M. He, X. Zhang, Y. Song, Materials 9 (2016) 253. |
| [24] | B. Kang, S. Han, J. Kim, S. Ko, M. Yang, J. Phys. Chem. C 115 (2011) 23664-23670. |
| [25] |
S. Hong, J. Yeo, G. Kim, D. Kim, H. Lee, J. Kwon, H. Lee, P. Lee, S.H. Ko, ACS Nano 7 (2013) 5024-5031.
URL PMID |
| [26] | S.H. Ko, H. Pan, C.P. Grigoropoulos, J.M.J. Fréchet, C.K. Luscombe, D. Poulikakos, Appl. Phys. A 92 (2008) 579-587. |
| [27] |
H. Pan, D.J. Hwang, S.H. Ko, T.A. Clem, J.M. Frechet, D. Bauerle, C.P. Grigoropoulos, Small 6 (2010) 1812-1821.
URL PMID |
| [28] | S. Hong, H. Lee, J. Yeo, S.H. Ko, Nano Today 11 (2016) 547-564. |
| [29] | L. Xia, G. Yu, G. Jian, Z. Li, L. Qu, J. Phys. Chem. C 113 (2010) 69-73. |
| [30] |
D. Ge, E. Lee, L. Yang, Y. Cho, M. Li, D.S. Gianola, S. Yang, Adv. Mater. 27 (2015) 2489-2495.
DOI URL PMID |
| [31] |
S. Bae, H. Kim, Y. Lee, X.F. Xu, J.S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H.R. Kim, Y.I. Song, Y.J. Kim, K.S. Kim, B. Ozyilmaz, J.H. Ahn, B.H. Hong, S. Iijima, Nat. Nanotechnol. 5 (2010) 574-578.
DOI URL PMID |
| [32] | J.H. Park, G.T. Hwang, S. Kim, J. Seo, H.J. Park, K. Yu, T.S. Kim, K.J. Lee, Adv. Mater. 29 (2017), 1603473. |
| [33] |
B. Deng, P.C. Hsu, G. Chen, B.N. Chandrashekar, L. Liao, Z. Ayitimuda, J. Wu, Y. Guo, L. Lin, Y. Zhou, Nano Lett. 15 (2015) 4206-4213.
URL PMID |
| [34] | A.I. Hofmann, E. Cloutet, G. Hadziioannou, Adv. Electron. Mater. (2018), 1700412. |
| [35] |
P. Lee, J. Lee, H. Lee, J. Yeo, S. Hong, K.H. Nam, D. Lee, S.S. Lee, S.H. Ko, Adv. Mater. 24 (2012) 3326-3332.
DOI URL PMID |
| [36] |
P. Lee, J. Ham, J. Lee, S. Hong, S. Han, Y.D. Suh, S.E. Lee, J. Yeo, S.S. Lee, D. Lee, S.H. Ko, Adv. Funct. Mater. 24 (2014) 5671-5678.
DOI URL |
| [37] |
H. Moon, P. Won, J. Lee, S.H. Ko, Nanotechnology 29 (2016), 295201.
URL PMID |
| [38] | B. Bari, J. Lee, T. Jang, P. Won, S.H. Ko, K. Alamgir, M. Arshad, L.J. Guo, J. Mater. Chem. A 4 (2016) 11365-11371. |
| [39] | J. Jang, B.G. Hyun, S. Ji, E. Cho, B.W. An, W.H. Cheong, J.U. Park, NPG Asia Mater. 9 (2017) e432. |
| [40] |
S. Hong, H. Lee, J. Lee, J. Kwon, S. Han, Y.D. Suh, H. Cho, J. Shin, J. Yeo, S.H. Ko, Adv. Mater. 27 (2015) 4744-4751.
URL PMID |
| [41] |
J. Kang, H. Kim, K.S. Kim, S.K. Lee, S. Bae, J.H. Ahn, Y.J. Kim, J.B. Choi, B.H. Hong, Nano Lett. 11 (2011) 5154-5158.
DOI URL PMID |
| [42] | P. Li, J. Ma, H. Xu, X. Xue, Y. Liu, J. Mater. Chem. C 10 (2016) 1039. |
| [1] | Xiangfu Liu, Rongwen Wang, Jinming Ma, Jibin Zhang, Pengfei Jiang, Yao Wang, Guoli Tu. Durable metal-enhanced fluorescence flexible platform by in-situ growth of micropatterned Ag nanospheres [J]. J. Mater. Sci. Technol., 2021, 69(0): 89-95. |
| [2] | Boda Zheng, Qingsheng Zhu, Yang Zhao. Fabrication of high-quality silver nanowire conductive film and its application for transparent film heaters [J]. J. Mater. Sci. Technol., 2021, 71(0): 221-227. |
| [3] | Zhihong Luo, Fujie Li, Chengliang Hu, Liankun Yin, Degui Li, Chenhao Ji, Xiangqun Zhuge, Kui Zhang, Kun Luo. Highly dispersed silver nanoparticles for performance-enhanced lithium oxygen batteries [J]. J. Mater. Sci. Technol., 2021, 73(0): 171-177. |
| [4] | Rajendra Kurapati, Vincent Maurice, Antoine Seyeux, Lorena H. Klein, Dimitri Mercier, Grégory Chauveau, Catherine Grèzes-Besset, Loïc Berthod, Philippe Marcus. Advanced protection against environmental degradation of silver mirror stacks for space application [J]. J. Mater. Sci. Technol., 2021, 64(0): 1-9. |
| [5] | Wang Guo, Wei Liu, Li Xu, Pei Feng, Yanru Zhang, Wenjing Yang, Cijun Shuai. Halloysite nanotubes loaded with nano silver for the sustained-release of antibacterial polymer nanocomposite scaffolds [J]. J. Mater. Sci. Technol., 2020, 46(0): 237-247. |
| [6] | Peng Jia, Ruiwen Huang, Suode Zhang, Engang Wang, Jiahao Yao. Synthesis of Ag-Cr thin film metallic glasses with enhanced sulfide-resistance [J]. J. Mater. Sci. Technol., 2020, 53(0): 32-36. |
| [7] | Huabo Li, Yuanyuan Cui, Yixin Liu, Lu Zhang, Quan Zhang, Juhua Zhang, Wei-Lin Dai. Highly efficient Ag-modified copper phyllosilicate nanotube: Preparation by co-ammonia evaporation hydrothermal method and application in the selective hydrogenation of carbonate [J]. J. Mater. Sci. Technol., 2020, 47(0): 29-37. |
| [8] | Lianghua Lin, Zhiyi Liu, Wenjuan Liu, Yaru Zhou, Tiantian Huang. Effects of Ag Addition on Precipitation and Fatigue Crack Propagation Behavior of a Medium-Strength Al-Zn-Mg Alloy [J]. J. Mater. Sci. Technol., 2018, 34(3): 534-540. |
| [9] | Jiajia Qiu, Yudong Shang, Xiuhua Chen, Shaoyuan Li, Wenhui Ma, Xiaohan Wan, Jia Yang, Yun Lei, Zhengjie Chen. Enhanced efficiency of graphene-silicon Schottky junction solar cell through inverted pyramid arrays texturation [J]. J. Mater. Sci. Technol., 2018, 34(11): 2197-2204. |
| [10] | Shanshan Yin, Qing Ji, Xiuxia Zuo, Shuang Xie, Kai Fang, Yonggao Xia, Jinlong Li, Bao Qiu, Meimei Wang, Jianzhen Ban, Xiaoyan Wang, Yi Zhang, Ying Xiao, Luyao Zheng, Suzhe Liang, Zhaoping Liu, Cundong Wang, Ya-Jun Cheng. Silicon lithium-ion battery anode with enhanced performance: Multiple effects of silver nanoparticles [J]. J. Mater. Sci. Technol., 2018, 34(10): 1902-1911. |
| [11] | Shao Wenting, Zhang Xinyu, Jiang Bailing, Liu Cancan, Li Hongtao. Spontaneous escape behavior of silver from graphite-like carbon coating and its inhibition mechanism [J]. J. Mater. Sci. Technol., 2017, 33(11): 1402-1408. |
| [12] | Hu Dan, Zhu Wei, Peng Yuncheng, Shen Shengfei, Deng Yuan. Flexible carbon nanotube-enriched silver electrode films with high electrical conductivity and reliability prepared by facile screen printing [J]. J. Mater. Sci. Technol., 2017, 33(10): 1113-1119. |
| [13] | C.H. Ng, O.K. Chan, H.C. Man , . Formation of TiN Grid on NiTi by Laser Gas Nitriding for Improving Wear Resistance in Hanks' Solution [J]. J. Mater. Sci. Technol., 2016, 32(5): 459-464. |
| [14] | Wei Xu, Qingsong Xu, Qijin Huang, Ruiqin Tan, Wenfeng Shen, Weijie Song. Fabrication of Flexible Transparent Conductive Films with Silver Nanowire by Vacuum Filtration and PET Mold Transfer [J]. J. Mater. Sci. Technol., 2016, 32(2): 158-161. |
| [15] | Yongguang Wang, Xiangyu Wang, Bo Sun, Shaochun Tang, Xiangkang Meng. Concentration-dependent Morphology Control of Pt-coated-Ag Nanowires and Effects of Bimetallic Interfaces on Catalytic Activity [J]. J. Mater. Sci. Technol., 2016, 32(1): 41-47. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
