J. Mater. Sci. Technol. ›› 2020, Vol. 47: 113-121.DOI: 10.1016/j.jmst.2019.12.027
• Research Article • Previous Articles Next Articles
Tao Liua, Jiahao Liua, Liuyang Zhanga,*(), Bei Chenga, Jiaguo Yua,b,**(
)
Received:
2019-11-25
Revised:
2019-12-24
Accepted:
2019-12-31
Published:
2020-06-15
Online:
2020-06-24
Contact:
Liuyang Zhang,Jiaguo Yu
Tao Liu, Jiahao Liu, Liuyang Zhang, Bei Cheng, Jiaguo Yu. Construction of nickel cobalt sulfide nanosheet arrays on carbon cloth for performance-enhanced supercapacitor[J]. J. Mater. Sci. Technol., 2020, 47: 113-121.
Fig. 1. Synthetic scheme for the growth of NiCoS/CC via a facile chemical bath deposition method followed with ion exchange and sulfidation treatment.
Fig. 5. (a) CV curves, (b) GCD curves, (c) specific capacitance at various current densities and (d) cycling performance of pristine NiCoS and NiCoS/CC measured at 20 A g-1.
Fig. 6. (a) Nyquist plot and (b) Bode phase angle plot of NiCoS/CC and pure NiCoS electrodes. (c) Schematic mechanism of the NiCoS/CC electrode for electrochemical energy storage.
Fig. 7. The device constructed by NiCoS/CC as the positive electrode and AC as the negative electrode: (a) CV curves, (b) GCD curves, (c) Ragone plot and (d) cycle performance.
Materials | Electrolyte | Voltage range (V) | Power density (W kg-1) | Energy density (W h kg-1) | Refs. |
---|---|---|---|---|---|
NiCo hydroxides/graphene aerogel | 3 M KOH | 1.6 | 1600 | 34.9 | [ |
Hollow NiCoP nanosphere | 6 M KOH | 1.0 | 100 | 10.2 | [ |
NiCoMn ternary sulfide nanoneedles on Ni foam | 3 M KOH | 1.6 | 390 | 36.2 | [ |
CoSx/Ni-Co LDH nanocages | 2 M KOH | 1.6 | 800 | 35.8 | [ |
NiCo2S4/graphene aerogel | PVA-KOH gel | 1.6 | 800 | 20.9 | [ |
NiCo2S4 nanocages | 3 M KOH | 1.6 | 689 | 41.4 | [ |
NiCo hydroxide/carbon nanotube | 6 M KOH | 1.4 | 701 | 37.9 | [ |
NiCo2S4@Ni3S2 hybrid nanoarray on Ni foam | 1 M KOH | 1.5 | 725 | 35.2 | [ |
NiCo2S4 nanoneedles on mesocarbon microbeads | 3 M KOH | 1.4 | 700 | 26.6 | [ |
NiCo2S4@CoS2 on carbon cloth | 2 M KOH | 0.55 | 242 | 17.0 | [ |
Nickel-cobalt phosphide hollow microspheres | 1 M KOH | 1.4 | 1823 | 35.6 | [ |
Nickel nanowire @NiCo2S4 arrays | 1 M KOH | 1.6 | 793 | 47.3 | [ |
Nickel cobalt selenide complex hollow spheres | 3 M KOH | 1.6 | 800 | 29.1 | [ |
NiCo double hydroxide microspheres | 6 M KOH | 1.6 | 400 | 42.5 | [ |
NiCo2S4/g-C3N4 | 2 M NaOH | 0.9 | 200 | 16.7 | [ |
NiCo2S4-rGO | 1 M KOH | 1.6 | 1600 | 36.0 | [ |
NiCoS/CC | 2 M KOH | 1.5 | 379 | 40.0 | This work |
Table 1 Comparison of our work with related literature on energy density and power density.
Materials | Electrolyte | Voltage range (V) | Power density (W kg-1) | Energy density (W h kg-1) | Refs. |
---|---|---|---|---|---|
NiCo hydroxides/graphene aerogel | 3 M KOH | 1.6 | 1600 | 34.9 | [ |
Hollow NiCoP nanosphere | 6 M KOH | 1.0 | 100 | 10.2 | [ |
NiCoMn ternary sulfide nanoneedles on Ni foam | 3 M KOH | 1.6 | 390 | 36.2 | [ |
CoSx/Ni-Co LDH nanocages | 2 M KOH | 1.6 | 800 | 35.8 | [ |
NiCo2S4/graphene aerogel | PVA-KOH gel | 1.6 | 800 | 20.9 | [ |
NiCo2S4 nanocages | 3 M KOH | 1.6 | 689 | 41.4 | [ |
NiCo hydroxide/carbon nanotube | 6 M KOH | 1.4 | 701 | 37.9 | [ |
NiCo2S4@Ni3S2 hybrid nanoarray on Ni foam | 1 M KOH | 1.5 | 725 | 35.2 | [ |
NiCo2S4 nanoneedles on mesocarbon microbeads | 3 M KOH | 1.4 | 700 | 26.6 | [ |
NiCo2S4@CoS2 on carbon cloth | 2 M KOH | 0.55 | 242 | 17.0 | [ |
Nickel-cobalt phosphide hollow microspheres | 1 M KOH | 1.4 | 1823 | 35.6 | [ |
Nickel nanowire @NiCo2S4 arrays | 1 M KOH | 1.6 | 793 | 47.3 | [ |
Nickel cobalt selenide complex hollow spheres | 3 M KOH | 1.6 | 800 | 29.1 | [ |
NiCo double hydroxide microspheres | 6 M KOH | 1.6 | 400 | 42.5 | [ |
NiCo2S4/g-C3N4 | 2 M NaOH | 0.9 | 200 | 16.7 | [ |
NiCo2S4-rGO | 1 M KOH | 1.6 | 1600 | 36.0 | [ |
NiCoS/CC | 2 M KOH | 1.5 | 379 | 40.0 | This work |
[1] | T. Liu, L. Zhang, B. Cheng, J. Yu, Adv. Energy Mater. 9 (2019), 1803900. |
[2] | L. Zhang, D. Shi, T. Liu, M. Jaroniec, J. Yu, Mater. Today 25 (2019) 35-65. |
[3] | H. Liu, H. Yu, J. Mater, Sci. Technol. 35 (2019) 674-686. |
[4] | B. Chen, H. Lu, J. Zhou, C. Ye, C. Shi, N. Zhao, S.Z. Qiao, Adv. Energy Mater. 8 (2018), 1702909. |
[5] | T. Ling, P. Da, X. Zheng, B. Ge, Z. Hu, M. Wu, X. Du, W. Hu, M. Jaroniec, S.Z. Qiao, Sci. Adv. 4 (2018) eaau6261. |
[6] | L. Xu, L. Zhang, B. Cheng, J. Yu, Carbon 152 (2019) 652-660. |
[7] | N. Wu, J. Low, T. Liu, J. Yu, S. Cao, Appl. Surf. Sci. 413 (2017) 35-40. |
[8] | Y. Wu, C. Cao, Sci. China Mater. 61 (2018) 1517-1526. |
[9] | J. Du, L. Liu, Y. Yu, Y. Zhang, H. Lv, A. Chen, J. Mater. Sci. Technol. 35 (2019) 2178-2186. |
[10] | T. Liu, L. Zhang, B. Cheng, W. You, J. Yu, Chem. Commun. 54 (2018) 3731-3734. |
[11] | X. Zhang, D. Su, A. Wu, H. Yan, X. Wang, D. Wang, L. Wang, C. Tian, L. Sun, H. Fu, Sci. China Mater. 62 (2019) 1115-1126. |
[12] | Y. Zhao, J. Liu, M. Horn, N. Motta, M. Hu, Y. Li, Sci. China Mater. 61 (2018) 159-184. |
[13] | T. Liu, C. Jiang, B. Cheng, W. You, J. Yu, J. Power Sources 359 (2017) 371-378. |
[14] | M. Li, W. Yang, Y. Huang, Y. Yu, Sci. China Mater. 61 (2018) 1167-1176. |
[15] | Y. Chen, G. Zhang, J. Zhang, H. Guo, X. Feng, Y. Chen, J. Mater. Sci. Technol. 34 (2018) 2189-2196. |
[16] | B. You, Y. Sun, Adv. Energy Mater. 6 (2016), 1502333. |
[17] | P. Kuang, M. He, B. Zhu, J. Yu, K. Fan, M. Jaroniec, J. Catal. 375 (2019) 8-20. |
[18] | Y. Shen, K. Zhang, B. Chen, F. Yang, K. Xu, X. Lu, J. Colloid Interface Sci. 557 (2019) 135-143. |
[19] | Y. Liu, S. Guo, W. Zhang, W. Kong, Z. Wang, W. Yan, H. Fan, X. Hao, G. Guan, Electrochim. Acta 317 (2019) 551-561. |
[20] | V. Sridhar, H. Park, J. Alloys Compd. 732 (2018) 799-805. |
[21] | C. Chen, D. Yan, X. Luo, W. Gao, G. Huang, Z. Han, Y. Zeng, Z. Zhu, ACS Appl. Mater. Interfaces 10 (2018) 4662-4671. |
[22] | G. Yilmaz, K.M. Yam, C. Zhang, H.J. Fan, G.W. Ho, Adv. Mater. 29 (2017), 1606814. |
[23] | C. Zhang, X. Cai, Y. Qian, H. Jiang, L. Zhou, B. Li, L. Lai, Z. Shen, W. Huang, Adv. Sci. 5 (2018), 1700375. |
[24] | J. Lin, H. Jia, H. Liang, S. Chen, Y. Cai, J. Qi, C. Qu, J. Cao, W. Fei, J. Feng, Chem. Eng. J. 336 (2018) 562-569. |
[25] | P. Geng, S. Zheng, H. Tang, R. Zhu, L. Zhang, S. Cao, H. Xue, H. Pang, Adv. Energy Mater. 8 (2018), 1703259. |
[26] | T. Liu, L. Li, L. Zhang, B. Cheng, W. You, J. Yu, J. Power Sources 426 (2019) 266-274. |
[27] | C. Qu, L. Zhang, W. Meng, Z. Liang, B. Zhu, D. Dang, S. Dai, B. Zhao, H. Tabassum, S. Gao, H. Zhang, W. Guo, R. Zhao, X. Huang, M. Liu, R. Zou, J. Mater. Chem. A 6 (2018) 4003-4012. |
[28] | J. Ma, S. Tang, J.A. Syed, D. Su, X. Meng, J. Mater. Sci. Technol. 34 (2018) 1103-1109. |
[29] | Y. Zhou, J. Jin, X. Zhou, F. Liu, P. Zhou, Y. Zhu, B. Xu, Ionics 25 (2019) 4031-4035. |
[30] | N. Wang, Y. Wang, S. Cui, H. Hou, L. Mi, W. Chen, ChemNanoMat 3 (2017) 269-276. |
[31] | N. Ouldhamadouche, A. Achour, R. Lucio-Porto, M. Islam, S. Solaymani, A. Arman, A. Ahmadpourian, H. Achour, L. Le Brizoual, M.A. Djouadi, T. Brousse, J. Mater. Sci. Technol. 34 (2018) 976-982. |
[32] | T. Liu, C. Jiang, B. Cheng, W. You, J. Yu, J. Mater. Chem. A 5 (2017) 21257-21265. |
[33] | T.W. Lin, M.C. Hsiao, A.Y. Wang, J.Y. Lin, Chemelectrochem 4 (2017) 620-627. |
[34] | T. Liu, C. Jiang, W. You, J. Yu, J. Mater. Chem. A 5 (2017) 8635-8643. |
[35] | Y. Huang, Y. Zhao, J. Bao, J. Lian, M. Cheng, H. Li, Electrochim. Acta 292 (2018) 157-167. |
[36] | J.R. Wang, F. Wan, Q.F. Lu, F. Chen, Q. Lin, J. Mater. Sci. Technol. 34 (2018) 1959-1968. |
[37] | W. He, C. Wang, H. Li, X. Deng, X. Xu, T. Zhai, Adv. Energy Mater. 7 (2017), 1700983. |
[38] | J. Xu, Y. Sun, M. Lu, L. Wang, J. Zhang, X. Liu, Sci. China Mater. 62 (2019) 699-710. |
[39] | G. Zhang, Y. Chen, Y. Jiang, C. Lin, Y. Chen, H. Guo, J. Mater. Sci. Technol. 34 (2018) 1538-1543. |
[40] | M. Govindasamy, S. Shanthi, E. Elaiyappillai, S.F. Wang, P.M. Johnson, H. Ikeda, Y. Hayakawa, S. Ponnusamy, C. Muthamizhchelvan, Electrochim. Acta 293 (2019) 328-337. |
[41] | C. Guan, X. Liu, W. Ren, X. Li, C. Cheng, J. Wang, Adv. Energy Mater. 7 (2017), 1602391. |
[42] | X. Liu, C. Guan, Y. Hu, L. Zhang, A. Elshahawy, J. Wang, Small 14 (2018), 1702641. |
[43] | Y. Chen, T. Liu, L. Zhang, J. Yu, ACS Sustain. Chem. Eng. 7 (2019) 11157-11165. |
[44] | Y. Chen, T. Liu, L. Zhang, J. Yu, Appl. Surf. Sci. 484 (2019) 135-143. |
[45] | P. Kuang, M. He, H. Zou, J. Yu, K. Fan, Appl. Catal. B 254 (2019) 15-25. |
[46] | H. Zou, B. He, P. Kuang, J. Yu, K. Fan, Adv. Funct. Mater. 28 (2018), 1706917. |
[47] | J. Luo, X. Xia, Y. Luo, C. Guan, J. Liu, X. Qi, C.F. Ng, T. Yu, H. Zhang, H.J. Fan, Adv. Energy Mater. 3 (2013) 737-743. |
[48] | Y. Lin, G. Chen, H. Wan, F. Chen, X. Liu, R. Ma, Small 15 (2019), 1900348. |
[49] | Z. Shi, L. Yue, X. Wang, X. Lei, T. Sun, Q. Li, H. Guo, W. Yang, J. Alloys Compd. 791 (2019) 665-673. |
[50] |
C. Chen, J. Zhou, Y. Li, Q. Li, H. Chen, K. Tao, L. Han, New J. Chem. 43 (2019) 7344-7349.
DOI URL |
[51] |
H. Niu, Y. Zhang, Y. Liu, B. Luo, N. Xin, W. Shi, J. Mater. Chem. A 7 (2019) 8503-8509.
DOI URL |
[52] |
S. Wang, Z. Xiao, S. Zhai, H. Wang, W. Cai, L. Qin, J. Huang, D. Zhao, Z. Li, Q. An, J. Mater. Chem. A 7 (2019) 17345-17356.
DOI URL |
[53] |
Y. Zhou, N. Li, L. Sun, X. Yu, C. Liu, L. Yang, S. Zhang, Z. Wang, Nanoscale 11 (2019) 7457-7464.
DOI URL PMID |
[54] | X.Q. Lin, W.D. Wang, Q.F. Lu, Y.Q. Jin, Q. Lin, R. Liu, J. Mater. Sci. Technol. 33 (2017) 1339-1345. |
[55] |
X. Li, K. Zhou, J. Zhou, J. Shen, M. Ye, J. Mater. Sci. Technol. 34 (2018) 2342-2349.
DOI URL |
[56] |
S. Gao, F. Liao, S. Ma, L. Zhu, M. Shao, J. Mater. Chem. A 3 (2015) 16520-16527.
DOI URL |
[57] |
M.K. Wu, C. Chen, J.J. Zhou, F.Y. Yi, K. Tao, L. Han, J. Alloys Compd. 734 (2018) 1-8.
DOI URL |
[58] |
R.R. Salunkhe, J. Lin, V. Malgras, S.X. Dou, J.H. Kim, Y. Yamauchi, Nano Energy 11 (2015) 211-218.
DOI URL |
[59] |
J. Cao, Q. Mei, R. Wu, W. Wang, Electrochim. Acta 321 (2019), 134711.
DOI URL |
[60] |
A. Gopalakrishnan, D. Yang, J. Ince, Y. Truong, A. Yu, S. Badhulika, J. Energy Storage 25 (2019), 100893.
DOI URL |
[61] | J. Sanchez, A. Pendashteh, J. Palma, M. Anderson, R. Marcilla, J. Mater. Chem. AMater. Energy Sustain. 7 (2019) 20414-20424. |
[62] |
X. Guan, M. Huang, L. Yang, G. Wang, X. Guan, Chem. Eng. J. 372 (2019) 151-162.
DOI URL |
[63] |
B. Li, Z. Tian, H. Li, Z. Yang, Y. Wang, X. Wang, Electrochim. Acta 314 (2019) 32-39.
DOI URL |
[64] |
G. Liu, H. Zhang, J. Li, Y. Liu, M. Wang, J. Mater. Sci. 54 (2019) 9666-9678.
DOI URL |
[65] |
Q. Zhou, T. Fan, Y. Li, D. Chen, S. Liu, X. Li, J. Power Sources 426 (2019) 111-115.
DOI URL |
[66] |
Y. Zhang, Y. Zhang, Y. Zhang, H. Si, L. Sun, Nano-Micro Lett. 11 (2019) 35.
DOI URL |
[67] | M. Govindasamy, S. Shanthi, E. Elaiyappillai, S. Wang, P. Johnson, H. Ikeda, Y. Hayakawa, S. Ponnusamy, C. Muthamizhchelvan, Electrochim. Acta 293 (2019) 328-337. |
[68] |
M. Gao, W. Wang, X. Zhang, J. Jiang, H. Yu, J. Phys. Chem. C 122 (2018) 25174-25182.
DOI URL |
[69] |
J. Liao, P. Zou, S. Su, A. Nairan, Y. Wang, D. Wu, C. Wong, F. Kang, C. Yang, J. Mater. Chem. A 6 (2018) 15284-15293.
DOI URL |
[70] | L. Quan, T. Liu, M. Yi, Q. Chen, D. Cai, H. Zhan, Electrochim. Acta 281 (2018) 109-116. |
[71] |
J. Li, M. Wei, W. Chu, N. Wang, Chem. Eng. J. 316 (2017) 277-287.
DOI URL |
[72] |
Z. Li, L. Wu, L. Wang, A. Gu, Q. Zhou, Electrochim. Acta 231 (2017) 617-625.
DOI URL |
[73] |
Y. Fan, Y. Liu, X. Liu, Y. Liu, L. Fan, Electrochim. Acta 249 (2017) 1-8.
DOI URL |
[1] | Xuemin Yin, Hejun Li, Ruimei Yuan, Jinhua Lu. NiCoLDH nanosheets grown on MOF-derived Co3O4 triangle nanosheet arrays for high-performance supercapacitor [J]. J. Mater. Sci. Technol., 2021, 62(0): 60-69. |
[2] | Donglin Han, Yuan Li, Xiangmei Liu, Kelvin Wai Kwok Yeung, Yufeng Zheng, Zhenduo Cui, Yanqin Liang, Zhaoyang Li, Shengli Zhu, Xianbao Wang, Shuilin Wu. Photothermy-strengthened photocatalytic activity of polydopamine-modified metal-organic frameworks for rapid therapy of bacteria-infected wounds [J]. J. Mater. Sci. Technol., 2021, 62(0): 83-95. |
[3] | Man Zhang, Di Hu, Zhenhao Xu, Biying Liu, Mebrouka Boubeche, Zuo Chen, Yuchen Wang, Huixia Luo, Kai Yan. Facile synthesis of Ni-, Co-, Cu-metal organic frameworks electrocatalyst boosting for hydrogen evolution reaction [J]. J. Mater. Sci. Technol., 2021, 72(0): 172-179. |
[4] | Xu Bao, Wei-Bin Zhang, Qiang Zhang, Lun Zhang, Xue-Jing Ma, Jianping Long. Interlayer material technology of manganese phosphate toward and beyond electrochemical pseudocapacitance over energy storage application [J]. J. Mater. Sci. Technol., 2021, 71(0): 109-128. |
[5] | Mengting Cao, Fengli Yang, Quan Zhang, Juhua Zhang, Lu Zhang, Lingfeng Li, Xiaohao Wang, Wei-Lin Dai. Facile construction of highly efficient MOF-based Pd@UiO-66-NH2@ZnIn2S4 flower-like nanocomposites for visible-light-driven photocatalytic hydrogen production [J]. J. Mater. Sci. Technol., 2021, 76(0): 189-199. |
[6] | Yiwen Hong, Jingli Xu, Jin Suk Chung, Won Mook Choi. Graphene quantum dots/Ni(OH)2 nanocomposites on carbon cloth as a binder-free electrode for supercapacitors [J]. J. Mater. Sci. Technol., 2020, 58(0): 73-79. |
[7] | Juan Du, Aibing Chen, Yue Zhang, Shuang Zong, Haixia Wu, Lei Liu. PVP-assisted preparation of nitrogen doped mesoporous carbon materials for supercapacitors [J]. J. Mater. Sci. Technol., 2020, 58(0): 197-204. |
[8] | Licheng Zhao, Ping Zhang, Yanan Zhang, Zhi Zhang, Lei Yang, Zhi-Gang Chen. Facile synthesis of hierarchical Ni3Se2 nanodendrite arrays for supercapacitors [J]. J. Mater. Sci. Technol., 2020, 54(0): 69-76. |
[9] | Jin Kyu Kim, Chang Soo Lee, Jae Hun Lee, Jung Tae Park, Jong Hak Kim. Ni, Co-double hydroxide wire structures with controllable voids for electrodes of energy-storage devices [J]. J. Mater. Sci. Technol., 2020, 55(0): 126-135. |
[10] | Yin Liu, Cuili Xiang, Hailiang Chu, Shujun Qiu, Jennifer McLeod, Zhe She, Fen Xu, Lixian Sun, Yongjin Zou. Binary Co-Ni oxide nanoparticle-loaded hierarchical graphitic porous carbon for high-performance supercapacitors [J]. J. Mater. Sci. Technol., 2020, 37(0): 135-142. |
[11] | Han Wu, Jingdong Guo, De’an Yang. Facile autoreduction synthesis of core-shell Bi-Bi2O3/CNT with 3-dimensional neural network structure for high-rate performance supercapacitor [J]. J. Mater. Sci. Technol., 2020, 47(0): 169-176. |
[12] | Jing Liang, Cuili Xiang, Yongjin Zou, Xuebu Hu, Hailiang Chu, Shujun Qiu, Fen Xu, Lixian Sun. Spacing graphene and Ni-Co layered double hydroxides with polypyrrole for high-performance supercapacitors [J]. J. Mater. Sci. Technol., 2020, 55(0): 190-197. |
[13] | Guoxiang Pan, Feng Cao, Yujian Zhang, Xinhui Xia. N-doped carbon nanofibers arrays as advanced electrodes for supercapacitors [J]. J. Mater. Sci. Technol., 2020, 55(0): 144-151. |
[14] | Xueying Yang, Cuili Xiang, Yongjin Zou, Jing Liang, Huanzhi Zhang, Erhu Yan, Fen Xu, Xuebu Hu, Qiong Cheng, Lixian Sun. Low-temperature synthesis of sea urchin-like Co-Ni oxide on graphene oxide for supercapacitor electrodes [J]. J. Mater. Sci. Technol., 2020, 55(0): 223-230. |
[15] | Poulami Hota, Milon Miah, Saptasree Bose, Diptiman Dinda, Uttam K. Ghorai, Yan-Kuin Su, Shyamal K. Saha. Ultra-small amorphous MoS2 decorated reduced graphene oxide for supercapacitor application [J]. J. Mater. Sci. Technol., 2020, 40(0): 196-203. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||