J. Mater. Sci. Technol. ›› 2020, Vol. 46: 225-236.DOI: 10.1016/j.jmst.2019.11.033
• Research Article • Previous Articles Next Articles
Sang-Hoon Kima, Sang Won Leea, Byoung Gi Moonb, Ha Sik Kimb, Sung Hyuk Parka,*()
Received:
2019-08-12
Revised:
2019-10-31
Accepted:
2019-11-18
Published:
2020-06-01
Online:
2020-06-19
Contact:
Sung Hyuk Park
Sang-Hoon Kim, Sang Won Lee, Byoung Gi Moon, Ha Sik Kim, Sung Hyuk Park. Variation in dynamic deformation behavior and resultant yield asymmetry of AZ80 alloy with extrusion temperature[J]. J. Mater. Sci. Technol., 2020, 46: 225-236.
Fig. 2. (a-c) Optical and (d-f) SEM micrographs of the extruded (a, d) AZ80-250, (b, e) AZ80-300, and (c, f) AZ80-350 alloys. fDRX denotes the area fraction of DRXed grains.
Fig. 3. EBSD results of extrusion butt of AZ80-250 alloy: (a) inverse pole figure (IPF) map; (b) grain orientation spread (GOS) map of the area marked in the schematic illustration of extrusion butt; (c-e) enlarged IPF maps of regions A, B, and C in (a); and (f) accumulative misorientation along the dotted line from point D to the grain boundary in (e). LABs, M, CT, and DT denote the low-angle boundaries, matrix, {10$\bar{1}$1} contraction twin, and {10$\bar{1}$1}-{10$\bar{1}$2} double twin, respectively.
Fig. 4. Number density and size distribution of unDRXed grains in the extruded alloys. The average and standard deviation of the size of unDRXed grains are listed in the inset table.
Extruded alloy | Area fraction (%)a | Grain size (μm)b | Schmid factorc | |||||
---|---|---|---|---|---|---|---|---|
funDRX | ffine-DRX | fcoarse-DRX | dunDRX | dfine-DRX | dcoarse-DRX | dtot | SF{} twin | |
AZ80-250 | 31.7 | 54.5 | 13.8 | 126(±121) | 3.7 | 12.0 | 46.8 | 0.39 |
AZ80-300 | 17.3 | 53.2 | 29.5 | 153(±111) | 5.5 | 15.8 | 36.2 | 0.40 |
AZ80-350 | 3.2 | 24.9 | 71.9 | 190(±109) | 10.3 | 21.9 | 20.8 | 0.43 |
Table 1 Microstructural characteristics of the extruded AZ80 alloys.
Extruded alloy | Area fraction (%)a | Grain size (μm)b | Schmid factorc | |||||
---|---|---|---|---|---|---|---|---|
funDRX | ffine-DRX | fcoarse-DRX | dunDRX | dfine-DRX | dcoarse-DRX | dtot | SF{} twin | |
AZ80-250 | 31.7 | 54.5 | 13.8 | 126(±121) | 3.7 | 12.0 | 46.8 | 0.39 |
AZ80-300 | 17.3 | 53.2 | 29.5 | 153(±111) | 5.5 | 15.8 | 36.2 | 0.40 |
AZ80-350 | 3.2 | 24.9 | 71.9 | 190(±109) | 10.3 | 21.9 | 20.8 | 0.43 |
Fig. 5. Inverse pole figure maps showing the fine- and coarse-grained DRXed regions of the extruded (a) AZ80-250, (b) AZ80-300, and (c) AZ80-350 alloys. dfine-DRX and dcoarse-DRX denote the average grain sizes of the fine- and coarse-grained DRXed regions, respectively.
Fig. 6. ED inverse pole figures for the DRXed region of the extruded (a) AZ80-250, (b) AZ80-300, and (c) AZ80-350 alloys obtained from the EBSD results presented in Fig. 5.
Fig. 7. (a) Variation in the Al solubility limit (red line) with temperature for the equilibrium state of AZ80 alloy, as calculated using PANDAT software. The blue horizontal line in (a) represent the Al content of the AZ80 alloy (8 wt.%). (b) Electrical resistivity of the homogenized billet and extruded alloys and amount of Mg17Al12 precipitates in the extruded alloys. AZ80-H in (b) denotes the homogenized AZ80 billet.
Fig. 8. SEM micrographs showing precipitates of the extruded (a, d, g) AZ80-250, (b, e, h) AZ80-300, and (c, f, i) AZ80-350 alloys: (a-c) fine-grained DRXed region, (d-f) coarse-grained DRXed region, and (g-i) unDRXed region.
Fig. 9. (a) Average hardness of the unDRXed, fine-grained DRXed, and coarse-grained DRXed regions of the extruded alloys; (b) the variation in the relative contribution of each region to the overall hardness with extrusion temperature calculated from the area fraction and hardness of each region.
Extruded alloy | TYS (MPa) | UTS (MPa) | EL (%) | CYS (MPa) | CYS/TYS |
---|---|---|---|---|---|
AZ80-250 | 241 (± 17) | 323 (± 12) | 5.5 (± 0.1) | 229 (± 12) | 0.95 |
AZ80-300 | 210 (± 2) | 310 (± 6) | 6.2 (± 0.7) | 187 (± 7) | 0.89 |
AZ80-350 | 194 (± 5) | 327 (± 3) | 13.1 (± 0.5) | 147 (± 0) | 0.76 |
Table 2 Mechanical properties of the extruded AZ80 alloys.
Extruded alloy | TYS (MPa) | UTS (MPa) | EL (%) | CYS (MPa) | CYS/TYS |
---|---|---|---|---|---|
AZ80-250 | 241 (± 17) | 323 (± 12) | 5.5 (± 0.1) | 229 (± 12) | 0.95 |
AZ80-300 | 210 (± 2) | 310 (± 6) | 6.2 (± 0.7) | 187 (± 7) | 0.89 |
AZ80-350 | 194 (± 5) | 327 (± 3) | 13.1 (± 0.5) | 147 (± 0) | 0.76 |
Fig. 11. Variation in the tensile yield strength (TYS), compressive yield strength (CYS), and yield ratio (CYS/TYS) of the extruded alloys with extrusion temperature. The green lines with arrows represent the difference between the TYS and the CYS.
Fig. 12. EBSD results of extruded AZ80-250 alloy: (a) inverse pole figure map and ED inverse pole figure of the unDRXed region; (b) GOS map of DRXed and unDRXed regions. SF{ 10$\bar{1}$2 } twin denotes the average Schmid factor for the {10$\bar{1}$2} twinning of the unDRXed region under compression along the extrusion direction.
Fig. 13. Optical micrographs showing {10$\bar{1}$2} twins formed during compression of the extruded (a, c) AZ80-250 and (b, d) AZ80-350 alloys subjected to 3% compression along the extrusion direction: (a, b) unDRXed region and (c, d) fine- and coarse-grained DRXed regions.
[1] | H. Friedrich, S. Schumann, J. Mater. Process. Technol. 117(2001) 276-281. |
[2] | B.L. Mordike, T. Ebert, Mater. Sci. Eng. A 302 (2001) 37-45. |
[3] | J.F. Nie, Metall. Mater. Trans. A 43 (2012) 3891-3939. |
[4] | M. Bauser, G. Sauer, K. Siegert, Extrusion, 2nd ed., ASM International, Ohio, 2006. |
[5] | F.J. Humphreys, M. Hatherly, Oxford, 2004. |
[6] | A.G. Beer, M.R. Barnett, Metall. Mater. Trans. A 38 (2007) 1856-1867. |
[7] | A. Galiyev, R. Kaibyshev, G. Gottstein, Acta Mater. 49(2001) 1199-1207. |
[8] | O. Sitdikov, R. Kaibyshev, Mater. Trans. 42(2001) 1928-1937. |
[9] |
K. Huang, R.E. Logé, Mater. Des. 111(2016) 548-574.
DOI URL |
[10] | H.C. Xiao, S.N. Jiang, B. Tang, W.H. Hao, Y.H. Cao, Z.Y. Chen, C.M. Liu, Mater. Sci. Eng. A 628 (2015) 311-318. |
[11] | Q. Ma, B. Li, E.B. Marin, S.J. Horstemeyer, Scr. Mater. 65(2011) 823-826. |
[12] |
D. Zhao, Y. Yang, J. Zhou, Y. Liu, C. Zhan, Mater. Sci. Eng. A 657 (2016) 393-398.
DOI URL |
[13] | S.W. Xu, S. Kamado, N. Matsumoto, T. Honma, Y. Kojima, Mater. Sci. Eng. A 527 (2009) 52-60. |
[14] |
C. Xie, J.M. He, B.W. Zhu, X. Liu, J. Zhang, X.F. Wang, X.D. Shu, Q.H. Fang, Int. J. Plasticity 111 (2018) 211-233.
DOI URL |
[15] | C. Bettles, M. Barnett, Advances in Wrought Magnesium Alloys: Fundamentals of Processing, Properties and Applications, Woodhead Publishing, Philadelphia, PA, USA, 2012. |
[16] | M. Hirano, M. Yamasaki, K. Hagihara, K. Higashida, Y. Kawamura, Mater. Trans. 51(2010) 1640-1647. |
[17] |
S.H. Park, B.S. You, R.K. Mishra, A.K. Sachdev, Mater. Sci. Eng. A 598 (2014) 396-406.
DOI URL |
[18] |
H. Ding, L. Liu, S. Kamado, W. Ding, Y. Kojima, J. Alloys Compd. 456(2008) 400-406.
DOI URL |
[19] |
T. Murai, S. Matsuoka, S. Miyamoto, Y. Oki, J. Mater. Process. Technol. 141(2003) 207-212.
DOI URL |
[20] |
W. Li, K. Deng, X. Zhang, K. Nie, F. Xu, Mater. Sci. Eng. A 677 (2016) 367-375.
DOI URL |
[21] |
C. Xu, T. Nakata, X.G. Qiao, H.S. Jiang, W.T. Sun, Y.C. Chi, M.Y. Zheng, S. Kamado, Mater. Sci. Eng. A 685 (2017) 159-167.
DOI URL |
[22] |
H. Yu, S.H. Park, B.S. You, Mater. Sci. Eng. A 610 (2014) 445-449.
DOI URL |
[23] |
M.G. Jiang, C. Xu, T. Nakata, H. Yan, R.S. Chen, S. Kamado, J. Alloys Compd. 694(2017) 1214-1223.
DOI URL |
[24] |
S.H. Park, J.H. Bae, S.H. Kim, J. Yoon, B.S. You, Metall. Mater. Trans. A 46 (2015) 5482-5488.
DOI URL |
[25] |
M. Shahzad, L. Wagner, Mater. Sci. Eng. A 506 (2009) 141-147.
DOI URL |
[26] |
S.H. Kim, B.S. You, S.H. Park, J. Alloys Compd. 690(2017) 417-423.
DOI URL |
[27] |
S.X. Xu, K. Oh-ishi, S. Kamado, H. Takahashi, T. Homma, Mater. Sci. Eng. A 542 (2012) 71-78.
DOI URL |
[28] |
F. Wang, R. Zheng, J. Chen, S. Lyu, Y. Li, W. Xiao, C. Ma, Vacuum 161 (2019) 429-433.
DOI URL |
[29] |
L.B. Tong, M.Y. Zheng, L.R. Cheng, S. Kamado, H.J. Zhang, Mater. Sci. Eng. A 569 (2013) 48-53.
DOI URL |
[30] |
M.G. Jiang, C. Xu, T. Nakata, H. Yan, R.S. Chen, S. Kamado, J. Alloys Compd. 668(2016) 13-21.
DOI URL |
[31] |
J.G. Jung, S.H. Park, H. Yu, Y.M. Kim, Y.K. Lee, B.S. You, Scr. Mater. 93(2014) 8-11.
DOI URL |
[32] |
Y. Wang, M. Xia, Z. Fan, X. Zhou, G.E. Thompson, Intermetallics 18 (2010) 1683-1689.
DOI URL |
[33] |
S.M. Fatemi-Varzaneh, A. Zarei-Hanzaki, H. Beladi, Mater. Sci. Eng. A 456 (2007) 52-57.
DOI URL |
[34] |
J. Koike, T. Kobayashi, T. Mukai, H. Watanabe, M. Suzuki, K. Maruyama, K. Higashi, Acta Mater. 51(2003) 2055-2065.
DOI URL |
[35] |
W.B. Hutchinson, Scr. Mater. 63(2010) 737-740.
DOI URL |
[36] |
A.E. Smith, Surf. Sci. 601(2007) 5762-5765.
DOI URL |
[37] |
S. Biswas, S.S. Dhinwal, S. Suwas, Acta Mater. 58(2010) 3247-3261.
DOI URL |
[38] |
S.I. Wright, M.M. Nowell, D.P. Field, Microsc. Microanal. 17(2011) 316-329.
DOI URL |
[39] |
S.W. Xu, N. Matsumoto, S. Kamado, T. Honma, Y. Kojima, Scr. Mater. 61(2009) 249-252.
DOI URL |
[40] |
P. Changizian, A. Zarei-Hanzaki, H.R. Abedi, Mater. Sci. Eng. A 558 (2012) 44-51.
DOI URL |
[41] |
M.R. Barnett, Mater. Sci. Eng. A 464 (2007) 8-16.
DOI URL |
[42] |
Q. Ma, H. El Kadiri, A.L. Oppedal, J.C. Baird, M.F. Horstemeyer, M. Cherkaoui, Scr. Mater. 64(2011) 813-816.
DOI URL |
[43] |
T. Al-Samman, K.D. Molodov, D.A. Molodov, G. Gottstein, S. Suwas, Acta Mater. 60(2012) 537-545.
DOI URL |
[44] |
K.D. Molodov, T. Al-Samman, D.A. Molodov, G. Gottstein, Acta Mater. 76(2014) 314-330.
DOI URL |
[45] |
A. Chapuis, J.H. Driver, Acta Mater. 59(2011) 1986-1994.
DOI URL |
[46] |
S.H. Park, J.H. Lee, B.G. Moon, B.S. You, J. Alloys Compd. 617(2014) 277-280.
DOI URL |
[47] |
S.R. Agnew, M.H. Yoo, C.N. Tomé, Acta Mater. 49(2001) 4277-4289.
DOI URL |
[48] |
M.G. Jiang, C. Xu, H. Yan, G.H. Fan, T. Nakata, C.S. Lao, R.S. Chen, S. Kamado, E.H. Han, B.H. Lu, Acta Mater. 157(2018) 53-71.
DOI URL |
[49] |
H. Pan, G. Qin, Y. Huang, Y. Ren, X. Sha, X. Han, Z.Q. Liu, C. Li, X. Wu, H. Chen, C. He, L. Chai, Y. Wang, J.F. Nie, Acta Mater. 149(2018) 350-363.
DOI URL |
[50] |
D. Ponge, G. Gottstein, Acta Mater. 46(1998) 69-80.
DOI URL |
[51] | Y.Z. Du, X.G. Qiao, M.Y. Zheng, K. Wu, S.W. Xu, Mater. Sci. Eng. A 620 (2015) 164-171. |
[52] |
H. Borkar, R. Gauvin, M. Pekguleryuz, J. Alloys Compd. 555(2013) 219-224.
DOI URL |
[53] | J.U. Lee, S.H. Kim, Y.J. Kim, S.H. Park, Mater. Sci. Eng. A 714 (2018) 49-58. |
[54] | Q. Zhu, L. Li, Z. Zhang, Z. Zhao, Y. Zuo, J. Cui, Mater. Trans. 55(2014) 270-274. |
[55] |
M.A. Azeem, A. Tewari, S. Mishra, S. Gollapudi, U. Ramamurty, Acta Mater. 58(2010) 1495-1502.
DOI URL |
[56] |
A.S.H. Kabir, M. Sanjari, J. Su, I.H. Jung, S. Yue, Mater. Sci. Eng. A 616 (2014) 252-259.
DOI URL |
[57] |
J.G. Jung, S.H. Park, B.S. You, J. Alloys Compd. 627(2015) 324-332.
DOI URL |
[58] |
S.H. Park, B.S. You, J. Alloys Compd. 637(2015) 332-338.
DOI URL |
[59] |
J.A. del Valle, F. Carre˜no, O.A. Ruano, Acta Mater. 54(2006) 4247-4259.
DOI URL |
[60] | A. Singh, Y. Osawa, H. Somekawa, T. Mukai, Scr. Mater. 64(2011) 661-664. |
[61] | H. Somekawa, Y. Osawa, T. Mukai, Scr. Mater. 55(2006) 593-596. |
[62] | J.D. Robson, N. Stanford, M.R. Barnett, Scr. Mater. 63(2010) 823-826. |
[63] | J. She, F. Pan, J. Zhang, A. Tang, S. Luo, Z. Yu, K. Song, M. Rashad, J. Alloys Compd. 657(2016) 893-905. |
[64] | S.W. Xu, K. Oh-ishi, H. Sunohara, S. Kamado, Mater. Sci. Eng. A 558 (2012) 356-365. |
[65] | L. Jiang, J.J. Jonas, A.A. Luo, A.K. Sachdev, S. Godet, Mater. Sci. Eng. A 445-446(2007) 302-309. |
[66] | S.G. Hong, S.H. Park, C.S. Lee, Acta Mater. 58(2010) 5873-5885. |
[67] | B. Wang, L. Deng, N. Guo, Z. Xu, Q. Li, Mater. Charact. 98(2014) 180-185. |
[68] |
S.H. Park, S.G. Hong, J.H. Lee, C.S. Lee, Mater. Sci. Eng. A 532 (2012) 401-406.
DOI URL |
[69] |
L. Wang, E. Mostaed, X. Cao, G. Huang, A. Fabrizi, F. Bonollo, C. Chi, M. Vedani, Mater. Des. 89(2016) 1-8.
DOI URL |
[70] | J. Jain, W.J. Poole, C.W. Sinclair, M.A. Gharghouri, Scr. Mater. 62(2010) 301-304. |
[71] | N. Stanford, M.R. Barnett, Mater. Sci. Eng. A 516 (2009) 226-234. |
[1] | Yuhui Zhang, Yuling Liu, Shuhong Liu, Hai-Lin Chen, Qing Chen, Shiyi Wen, Yong Du. Assessment of atomic mobilities and simulation of precipitation evolution in Mg-X (X=Al, Zn, Sn) alloys [J]. J. Mater. Sci. Technol., 2021, 62(0): 70-82. |
[2] | S.Z. Wu, T. Nakata, G.Z. Tang, C. Xu, X.J. Wang, X.W. Li, X.G. Qiao, M.Y. Zheng, L. Geng, S. Kamado, G.H. Fan. Effect of forced-air cooling on the microstructure and age-hardening response of extruded Mg-Gd-Y-Zn-Zr alloy full with LPSO lamella [J]. J. Mater. Sci. Technol., 2021, 73(0): 66-75. |
[3] | Wei Wu, Yongshan Wei, Hongjiang Chen, Keyan Wei, Zhitong Li, Jianhui He, Libo Deng, Lei Yao, Haitao Yang. In-situ encapsulation of α-Fe2O3 nanoparticles into ZnFe2O4 micro-sized capsules as high-performance lithium-ion battery anodes [J]. J. Mater. Sci. Technol., 2021, 75(0): 110-117. |
[4] | L. Zhou, C.L. Wu, P. Xie, F.J. Niu, W.Q. Ming, K. Du, J.H. Chen. A hidden precipitation scenario of the θ′-phase in Al-Cu alloys [J]. J. Mater. Sci. Technol., 2021, 75(0): 126-138. |
[5] | Yongliang Qi, Tinghui Cao, Hongxiang Zong, Yake Wu, Lin He, Xiangdong Ding, Feng Jiang, Shenbao Jin, Gang Sha, Jun Sun. Enhancement of strength-ductility balance of heavy Ti and Al alloyed FeCoNiCr high-entropy alloys via boron doping [J]. J. Mater. Sci. Technol., 2021, 75(0): 154-163. |
[6] | Longqing Tang, Guowei Bo, Fulin Jiang, Shiwei Xu, Jie Teng, Dingfa Fu, Hui Zhang. Unravelling the precipitation evolutions of AZ80 magnesium alloy during non-isothermal and isothermal processes [J]. J. Mater. Sci. Technol., 2021, 75(0): 184-195. |
[7] | Hyun Ji Kim, Sang-Cheol Jin, Jae-Gil Jung, Sung Hyuk Park. Influence of undissolved second-phase particles on dynamic recrystallization behavior of Mg-7Sn-1Al-1Zn alloy during low- and high-temperature extrusions [J]. J. Mater. Sci. Technol., 2021, 71(0): 87-97. |
[8] | Peiru Yang, Chenxi Liu, Qianying Guo, Yongchang Liu. Variation of activation energy determined by a modified Arrhenius approach: Roles of dynamic recrystallization on the hot deformation of Ni-based superalloy [J]. J. Mater. Sci. Technol., 2021, 72(0): 162-171. |
[9] | X.W. Liu, N. Gao, J. Zheng, Y. Wu, Y.Y. Zhao, Q. Chen, W. Zhou, S.Z. Pu, W.M. Jiang, Z.T. Fan. Improving high-temperature mechanical properties of cast CrFeCoNi high-entropy alloy by highly thermostable in-situ precipitated carbides [J]. J. Mater. Sci. Technol., 2021, 72(0): 29-38. |
[10] | Xiaojie Zhou, Yuan Yao, Jian Zhang, Xiaomin Chen, Weiying Huang, Jing Pan, Haoran Wang, Maopeng Weng. A high-performance Mg-4.9Gd-3.2Y-1.1Zn-0.5Zr alloy via multidirectional forging after analyzing its compression behavior [J]. J. Mater. Sci. Technol., 2021, 70(0): 156-167. |
[11] | Qiyu Liao, Yanchao Jiang, Qichi Le, Xingrui Chen, Chunlong Cheng, Ke Hu, Dandan Li. Hot deformation behavior and processing map development of AZ110 alloy with and without addition of La-rich Mish Metal [J]. J. Mater. Sci. Technol., 2021, 61(0): 1-15. |
[12] | Xiong-jie Gu, Wei-li Cheng, Shi-ming Cheng, Yan-hui Liu, Zhi-feng Wang, Hui Yu, Ze-qin Cui, Li-fei Wang, Hong-xia Wang. Tailoring the microstructure and improving the discharge properties of dilute Mg-Sn-Mn-Ca alloy as anode for Mg-air battery through homogenization prior to extrusion [J]. J. Mater. Sci. Technol., 2021, 60(0): 77-89. |
[13] | Yuankui Cao, Weidong Zhang, Bin Liu, Yong Liu, Meng Du, Ao Fu. Phase decomposition behavior and its effects on mechanical properties of TiNbTa0.5ZrAl0.5 refractory high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 66(0): 10-20. |
[14] | Sang Won Lee, Gukin Han, Tea-Sung Jun, Sung Hyuk Park. Effects of initial texture on deformation behavior during cold rolling and static recrystallization during subsequent annealing of AZ31 alloy [J]. J. Mater. Sci. Technol., 2021, 66(0): 139-149. |
[15] | Xiaofei Cui, Wei Fu, Daqing Fang, Guangli Bi, Zijun Ren, Shengwu Guo, Suzhi Li, Xiangdong Ding, Jun Sun. Mechanical properties and deformation mechanisms of a novel fine-grained Mg-Gd-Y-Ag-Zr-Ce alloy with high strength-ductility synergy [J]. J. Mater. Sci. Technol., 2021, 66(0): 64-73. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||