J. Mater. Sci. Technol. ›› 2020, Vol. 46: 237-247.DOI: 10.1016/j.jmst.2019.11.019
• Research Article • Previous Articles
Wang Guoa,1, Wei Liub,1, Li Xuc, Pei Fenga, Yanru Zhangc, Wenjing Yanga, Cijun Shuaia,d,e,*()
Received:
2019-08-03
Revised:
2019-11-14
Accepted:
2019-11-19
Published:
2020-06-01
Online:
2020-06-19
Contact:
Cijun Shuai
About author:
1These authors contributed equally to this work.
Wang Guo, Wei Liu, Li Xu, Pei Feng, Yanru Zhang, Wenjing Yang, Cijun Shuai. Halloysite nanotubes loaded with nano silver for the sustained-release of antibacterial polymer nanocomposite scaffolds[J]. J. Mater. Sci. Technol., 2020, 46: 237-247.
Fig. 1. A schematic diagram illustrating the loading of nano Ag into the lumen of HNTs to construct a shell@core structured HNTs@Ag nanosystem through vacuum negative-pressure suction & injection and thermal decomposition of CH3COOAg. (a) HNTs are suspended in the CH3COOAg solution; (b) the vacuum removes air bubbles from the lumen of HNTs; (c) the CH3COOAg solution enters into the lumen of HNTs when the vacuum is broken; (d) washing, centrifuging and drying; and (e) thermal decomposition at 380 ℃ to produce nano Ag loaded HNTs.
Fig. 2. (a) The XRD patterns and (b) FTIR of HNTs and HNTs@Ag powders. (c, g) STEM, (d, h) TEM, (e, i) HRTEM and (f, j) SAED of (c?f) HNTs and (g?j) HNTs@Ag powders.
Fig. 3. (a) The preparation of PLLA-HNTs@Ag powders and the SEM morphology of powders; (b) a schematic diagram describing the preparation of PLLA-HNTs@Ag scaffolds by SLS and photographs of a representative porous scaffold; (c) the XRD patterns and (d) FTIR of PLLA-HNTs@Ag scaffolds. Note: HNTs@Ag was detected in the scaffolds.
Fig. 4. (a) The cumulative release concentration of Ag+ after soaking in deionized water for different time; (b) the average release concentration of Ag+ during different soaking periods; note: the result indicated Ag+ showed a sustained-release for 28 days and its release concentration can be adjusted by changing the content of HNTs@Ag; (c) a schematic diagram illustrating a possible mechanism of sustained-release of Ag+ from the scaffolds with a five-stage process, as discussed in the text.
Samples | n | k | R2 |
---|---|---|---|
PLLA-2%HNTs@Ag | 0.35425 | 10.22581 | 0.98419 |
PLLA-4%HNTs@Ag | 0.36839 | 7.44011 | 0.9819 |
PLLA-6%HNTs@Ag | 0.34746 | 8.15246 | 0.98111 |
PLLA-8%HNTs@Ag | 0.33022 | 9.52626 | 0.97514 |
Table 1 Release kinetic parameters of Ag+ from PLLA/HNTs@Ag scaffolds from fitting with the Ritger-Peppas model.
Samples | n | k | R2 |
---|---|---|---|
PLLA-2%HNTs@Ag | 0.35425 | 10.22581 | 0.98419 |
PLLA-4%HNTs@Ag | 0.36839 | 7.44011 | 0.9819 |
PLLA-6%HNTs@Ag | 0.34746 | 8.15246 | 0.98111 |
PLLA-8%HNTs@Ag | 0.33022 | 9.52626 | 0.97514 |
Fig. 5. (a?c) Photographs of the PLLA-HNTs@Ag scaffolds after disk diffusion test for 3, 7, and 14 days; (d) the diameter of the inhibition zones; (e?i) the adhesion morphology of E. coil on the scaffolds after culture for one day. Note: the results indicated that HNTs@Ag endowed the scaffolds with a long-lasting and strong antibacterial property.
Fig. 6. The cytocompatibility of the PLLA/HNTs@Ag scaffolds tested by MG63 cells. (a?j) fluorescence staining images of MG63 cells after culture on the scaffolds for 1 and 3 days; (k) the CCK-8 assay of MG63 cells after culture on the scaffolds for 1, 3 and 5 days; (l?o) ALP staining images of MG63 cells after culture on the scaffolds for 5 days. Note: the results indicated the scaffolds supported the cell proliferation and osteogenic differentiation.
Fig. 7. (a) The mass loss of PLLA-HNTs@Ag scaffolds and (b) the pH of PBS after soaking test for different days; (c?h) the surface morphology of the scaffolds after soaking in SBF for 28 days. Note: the results indicated that HNTs@Ag improved the degradability and biomineralization ability of the scaffolds.
Fig. 8. (a?e) The distribution of HNTs@Ag in the PLLA matrix of the scaffolds with 0 to 8 wt% HNTs@Ag; (f) EDS spectra of S1, S2, and S3; (g) the compressive strength and modulus and (h) hardness of PLLA-HNTs@Ag scaffolds. Note: HNTs@Ag achieved a relatively uniform distribution in the PLLA matrix at relatively low contents, thereby keeping increase of the compressive strength and modulus and hardness with increasing its content; nevertheless, excessive HNT@Ag resulted in obvious aggregates and weakened the reinforcing effects.
[1] | X. Lin, S. Yang, K. Lai, H. Yang, T.J. Webster, L. Yang, Nanomed.-Nanotechnol. 13(2017) 123-142. |
[2] | A. Dubnika, D. Loca, V. Rudovica, M.B. Parekh, L. Berzina-Cimdina, Ceram. Int. 43(2017) 3698-3705. |
[3] |
T. Wang, C. Wang, S. Zhou, J. Xu, W. Jiang, L. Tan, J. Fu, Chem. Mater. 29(2017) 8325-8337.
DOI URL |
[4] |
S. Calamak, R. Shahbazi, I. Eroglu, M. Gultekinoglu, K. Ulubayram, Expert Opin. Drug Dis. 12(2017) 391-406.
DOI URL |
[5] | Y. X.J.Ong, L.Y. Lee, P. Davoodi, C.-H. Wang, J. Supercrit. Fluid. 133(2018) 263-269. |
[6] | L.E. Visscher, H.P. Dang, M.A. Knackstedt, D.W. Hutmacher, P.A. Tran, Mater. Sci. Eng. C 87 (2018) 78-89. |
[7] | N. Miriyala, D. Ouyang, Y. Perrie, D. Lowry, D.J. Kirby, Eur. J. Pharm. Biopharm. 115(2017) 197-205. |
[8] |
F. Zheng, S. Wang, S. Wen, M. Shen, M. Zhu, X. Shi, Biomaterials 34 (2013) 1402-1412.
DOI URL |
[9] | R. Scaffaro, A. Maio, F. Lopresti, Compos. Sci. Technol. 169(2019) 60-69. |
[10] |
T. Xu, F. Zheng, Z. Chen, Y. Ding, Z. Liang, Y. Liu, Z. Zhu, H. Fong, Chem. Eng. J. 360(2019) 280-288.
DOI URL |
[11] |
A.A. Alswat, M.B. Ahmad, M.Z. Hussein, N.A. Ibrahim, T.A. Saleh, J. Mater. Sci. Technol. 33(2017) 889-896.
DOI URL |
[12] | X. Ma, H. Feng, C. Liang, X. Liu, F. Zeng, Y. Wang, J. Mater. Sci. Technol. 33(2017) 1067-1074. |
[13] |
J. Xiao, Y. Wan, Z. Yang, Y. Huang, F. Yao, H. Luo, J. Mater. Sci. Technol. 35(2019) 1959-1965.
DOI URL |
[14] | M. Massaro, C.G. Colletti, G. Lazzara, S. Guernelli, R. Noto, S. Riela, ACS Sustain. Chem. Eng. 5(2017) 3346-3352. |
[15] |
M. Makaremi, P. Pasbakhsh, G. Cavallaro, G. Lazzara, Y.K. Aw, S.M. Lee, S. Milioto, ACS Appl. Mater. Interfaces 9 (2017) 17476-17488.
DOI URL |
[16] |
Y. Liu, M. Liu, Compos. Sci. Technol. 143(2017) 56-66.
DOI URL |
[17] |
A. Stavitskaya, S. Batasheva, V. Vinokurov, G. Fakhrullina, V. Sangarov, Y. Lvov, R. Fakhrullin, Nanomaterials 9 (2019) 20.
DOI URL |
[18] |
Y. Lvov, W. Wang, L. Zhang, R. Fakhrullin, Adv. Mater. 28(2016) 1227-1250.
DOI URL |
[19] | E. Abdullayev, K. Sakakibara, K. Okamoto, W. Wei, K. Ariga, Y. Lvov, ACS Appl. Mater. Interfaces 3 (2011) 4040-4046. |
[20] |
M. Liu, Z. Jia, D. Jia, C. Zhou, Prog. Polym. Sci. 39(2014) 1498-1525.
DOI URL |
[21] |
J. Ouyang, D. Mu, Y. Zhang, H. Yang, S. Suib, Minerals 8 (2018) 296.
DOI URL |
[22] |
M. Nakano, T. Fujiwara, N. Koga, J. Phys. Chem. C 120 (2016) 8841-8854.
DOI URL |
[23] | P. Feng, J. Jia, S. Peng, W. Yang, S. Bin, C. Shuai, Virtual Phys. Prototy. 15(2020) 1-16. |
[24] | P. Feng, Y. Kong, L. Yu, Y. Li, C. Gao, S. Peng, H. Pan, Z. Zhao, C. Shuai, Appl. Mater. Today 17 (2019) 216-226. |
[25] |
C. Shuai, W. Guo, P. Wu, W. Yang, S. Hu, Y. Xia, P. Feng, Chem. Eng. J. 347(2018) 322-333.
DOI URL |
[26] |
W. Guo, Y. Zhang, P. Feng, C. Gao, Y. Yang, W. Yang, S. Peng, C. Shuai, Ceram. Int. 45(2019) 11517-11526.
DOI URL |
[27] | S. Yin, Q. Ji, X. Zuo, S. Xie, K. Fang, Y. Xia, J. Li, B. Qiu, M. Wang, J. Ban, J. Mater. Sci. Technol. 34(2018) 1902-1911. |
[28] |
D. Ke, J. Wang, H. Zhang, Y. Li, L. Zhang, X. Zhao, S. Han, J. Mater. Sci. Technol. 34(2018) 2350-2358.
DOI URL |
[29] |
Y. Zhang, T. Wang, M. Zhou, Y. Wang, Z. Zhang, Ceram. Int. 43(2017) 3118-3126.
DOI URL |
[30] | D. Hong, G. Cao, J. Qu, Y. Deng, J. Tang, J. Mater. Sci. Technol. 34(2018) 2359-2367. |
[31] | S. Song, F. Qiu, W. Zhu, Y. Guo, Y. Zhang, Y. Ju, R. Feng, Y. Liu, Z. Chen, J. Zhou, Sol. Energy Mater. Sol. Cells 193 (2019) 237-245. |
[32] | S. Bose, M. Roy, A. Bandyopadhyay, Trends Biotechnol. 30(2012) 546-554. |
[33] | H. Cai, Y. Zhang, X. Li, J. Meng, F. Xue, C. Chu, L. Tao, J. Bai, Compos. Sci. Technol. 162(2018) 198-205. |
[34] | C.C. Cheng, Z.S. Liao, J.J. Huang, S.Y. Huang, W.L. Fan, Compos. Sci. Technol. 148(2017) 89-96. |
[35] |
A. Kumar, S.M. Zo, J.H. Kim, S.C. Kim, S.S. Han, Compos. Sci. Technol. 175(2019) 35-45.
DOI URL |
[36] | P.L. Ritger, N.A. Peppas, J. Control. Release 5 (1987) 37-42. |
[37] | S. Saber-Samandari, S. Saber-Samandari, Mater. Sci. Eng. C 75 (2017) 721-732. |
[38] |
K. Mijnendonckx, N. Leys, J. Mahillon, S. Silver, R. Van Houdt, , Biometals 26 (2013) 609-621.
DOI URL |
[39] | O.-M. Goudouri, E. Kontonasaki, U. Lohbauer, A.R. Boccaccini, Acta Biomater. 10(2014) 3795-3810. |
[40] | C. Shuai, Y. Xu, P. Feng, G. Wang, S. Xiong, S. Peng, Chem. Eng. J. 374(2019) 304-315. |
[41] |
W.K. Jung, H.C. Koo, K.W. Kim, S. Shin, S.H. Kim, Y.H. Park, Appl. Environ. Microb. 74(2008) 2171-2178.
DOI URL |
[42] |
M. Rai, A. Yadav, A. Gade, Biotechnol. Adv. 27(2009) 76-83.
DOI URL |
[43] | C.D. Gao, S.P. Peng, P. Feng, C.J. Shuai, Bone Res. 5(2017) 33. |
[44] | C. Shuai, W. Yang, Y. Yang, H. Pan, C. He, F. Qi, D. Xie, H. Liang, Mater. Res. Exp. 7(2020), 15404. |
[45] |
M.Y. Shie, S.J. Ding, H.C. Chang, Acta Biomater. 7(2011) 2604-2614.
DOI URL |
[46] | P. Han, C. Wu, Y. Xiao, Biomater. Sci.-U. K. 1(2013) 379-392. |
[47] |
V. Vergaro, E. Abdullayev, Y.M. Lvov, A. Zeitoun, R. Cingolani, R. Rinaldi, S. Leporatti, Biomacromolecules 11 (2010) 820-826.
DOI URL |
[48] |
C.J. Shuai, W. Guo, C.D. Gao, Y.W. Yang, Y. Xu, L. Liu, T. Qin, H. Sun, S. Yang, P. Feng, P. Wu, Polymers 9 (2017) 175.
DOI URL |
[49] |
C. Gao, M. Yao, S. Li, P. Feng, S. Peng, C. Shuai, J. Adv. Res. 20(2019) 91-104.
DOI URL |
[50] |
C. Shuai, L. Yu, W. Yang, S. Peng, Y. Zhong, P. Feng, Polymers 12 (2020) 199.
DOI URL |
[51] | S.Y. Fu, X.Q. Feng, B. Lauke, Y.W. Mai, Compos. Part B 39 (2008) 933-961. |
[52] |
P. Feng, J.Y. He, S.P. Peng, C.D. Gao, Z.Y. Zhao, S.X. Xiong, C.J. Shuai, Mater. Sci. Eng. C 100 (2019) 809-825.
DOI URL |
[53] |
C. Shuai, J. Zan, Y. Yang, S. Peng, W. Yang, F. Qi, L. Shen, Z. Tian, Mater. Sci. Eng. C 108 (2020), 110486.
DOI URL |
[54] |
C. Gao, M. Yao, C. Shuai, S. Peng, Y. Deng, J. Mater. Sci. Technol. 35(2019) 2608-2617.
DOI URL |
[55] | C. Shuai, Z. Zeng, Y. Yang, F. Qi, S. Peng, W. Yang, C. He, G. Wang, G. Qian, Mater. Design 190 (2020), 108564. |
[56] | Y. Yang, J. Zan, W. Yang, F. Qi, S. Huang, S. Peng, C. Shuai, Mater. Chem. Front. (2020), http://dx.doi.org/10.1039/C9QM00772E. |
[57] |
S. He, S. Yang, Y. Zhang, X. Li, D. Gao, Y. Zhong, L. Cao, H. Ma, Y. Liu, G. Li, Cell Death Dis. 10(2019) 1-16.
DOI URL |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||