J. Mater. Sci. Technol. ›› 2020, Vol. 44: 191-200.DOI: 10.1016/j.jmst.2020.01.033
• Research Article • Previous Articles Next Articles
Xiaochun Hea, Yang Lia, Yongjie Bia, Xiaomei Liua, Bing Zhoua, Shangzhou Zhanga*(), Shujun Lib
Received:
2019-08-17
Revised:
2019-10-08
Accepted:
2019-10-22
Published:
2020-05-01
Online:
2020-05-21
Contact:
Shangzhou Zhang
Xiaochun He, Yang Li, Yongjie Bi, Xiaomei Liu, Bing Zhou, Shangzhou Zhang, Shujun Li. Finite element analysis of temperature and residual stress profiles of porous cubic Ti-6Al-4V titanium alloy by electron beam melting[J]. J. Mater. Sci. Technol., 2020, 44: 191-200.
Fig. 1. FE models of porous cubic structures: (a) single-layer FE model, (b) five-layer FE model, (c) annular scanning, (d) lateral scanning, (e, f) points a, b, c, d and P4, P5, P6 paths for analysis of temperature and stress behaviors. a1?a5 represents the points from the first layer to the fifth layer at node a.
Process parameters | Values |
---|---|
Power (W) | 100 |
Speed (mm/s) | 200 |
Beam spot diameter (mm) | 0.2 |
Preheating temperature (°C) | 730 |
Thickness of powder layer (mm) | 0.05 |
Hatching spacing (mm) | 0.2 |
Powder absorptivity | 0.3 |
Density (kg/m3) | 4440 |
Melting point (°C) | 1649 |
Thermal conductivity at 20 °C (W m-1 °C -1) | 6.8 |
Specific heat at 20 °C (J kg-1 °C-1) | 611 |
Latent heat of fusion at 20 °C (J/kg) | 5.4 × 107 |
Thermal expansion coefficient at 20 °C (10-6 °C-1) | 8.4 |
Poisson’s ratio at 20 °C | 0.34 |
Yield strength at 20 °C (MPa) | 920 |
Young’s modulus at 20 °C (GPa) | 109 |
Table 1 Process parameters of porous cubic grids by EBM.
Process parameters | Values |
---|---|
Power (W) | 100 |
Speed (mm/s) | 200 |
Beam spot diameter (mm) | 0.2 |
Preheating temperature (°C) | 730 |
Thickness of powder layer (mm) | 0.05 |
Hatching spacing (mm) | 0.2 |
Powder absorptivity | 0.3 |
Density (kg/m3) | 4440 |
Melting point (°C) | 1649 |
Thermal conductivity at 20 °C (W m-1 °C -1) | 6.8 |
Specific heat at 20 °C (J kg-1 °C-1) | 611 |
Latent heat of fusion at 20 °C (J/kg) | 5.4 × 107 |
Thermal expansion coefficient at 20 °C (10-6 °C-1) | 8.4 |
Poisson’s ratio at 20 °C | 0.34 |
Yield strength at 20 °C (MPa) | 920 |
Young’s modulus at 20 °C (GPa) | 109 |
Fig. 5. Temperature field distributions after annular scanning: (a) the first layer, (b) the second layer, (c) the third layer, (d) the fourth layer, (e) the fifth layer.
Fig. 8. Von Mises stress distributions of points a, b, c, d, e under annular (a, b) and lateral (c, d) scanning and residual stress values (e, f) in single-layer models.
Fig. 9. Von Mises stress distributions at point a under annular (a) and lateral (b) scanning and residual stress values of points a, b, c, d, e (c, d) for five-layer models.
Fig. 10. Von Mises stress distributions along P6 path under annular and lateral scanning for five-layer models (a) and distortion behavior of porous Ti-6Al-4V prepared by EBM under lateral scanning (b).
Fig. 11. Von Mises stress distributions along P6 path under annular and lateral scanning through changing the power from 100 W to 80 W for five-layer models (a) and the corresponding porous Ti-6Al-4V alloy grids (b).
[1] | M. Naebe, K. Shirvanimoghaddam, Appl. Mater. Today 5 (2016)223-245. |
[2] |
S.Z. Zhang, C. Li, W.T. Hou, S. Zhao, S.J. Li, J. Mater. Sci. Technol. 32(2016) 1098-1104.
DOI URL |
[3] | A. Mohammadhosseini, S.H. Masood, D. Fraser, M. Jahedi, S. Gulizia, Mater. Today: Proc. 4(2017) 8260-8268. |
[4] | I. Eldesouky, O. Harrysson, H. West, H. Elhofy, Addit. Manuf. 17(2017) 169-175. |
[5] |
M. Kaur, K. Singh, Mater. Sci. Eng. C 102 (2019) 844-862.
DOI URL |
[6] |
X. Li, S.L. Ye, X.N. Yuan, P. Yu, J. Alloys. Compd. 772(2019) 968-977.
DOI URL |
[7] |
N. Ahmed, J. Manuf. Process. 42(2019) 167-191.
DOI URL |
[8] |
H. Lee, T.S. Jang, J.H. Song, H.E. Kim, H.D. Jung, Mater. Lett. 185(2016) 21-24.
DOI URL |
[9] |
W. Yuan, W.T. Hou, S.J. Li, Y.L. Hao, R. Yang, L.C. Zhang, Y. Zhu, J. Mater. Sci. Technol. 34(2018) 1127-1131.
DOI URL |
[10] |
B. Vayre, F. Vignat, F. Villeneuve, Proc. CIRP 7 (2013) 264-269.
DOI URL |
[11] | L.E. Murr, Addit. Manuf. 5(2015) 40-53. |
[12] |
V. Chastand, P. Quaegebeur, W. Maia, E. Charkaluk, Mater. Charact. 143(2018) 76-81.
DOI URL |
[13] |
T. Persenot, A. Burr, G. Martin, J. Buffiere, E. Maire, Int. J. Fatigue 118 (2019) 65-76.
DOI URL |
[14] |
X.P. Tan, Y.H. Kok, Y.J. Tan, M. Descoins, C.K. Chua, Acta Mater. 97(2015) 1-16.
DOI URL |
[15] | S.Y. Liu, Y.C. Shin, Mater. Des. 164(2019) 1-23. |
[16] |
P. Promoppatum, R. Onler, S.C. Yao, J. Mater. Process. Technol. 240(2017) 262-273.
DOI URL |
[17] |
H.S. Tran, J.T. Tchuindjang, H. Paydas, A. Mertens, A.M. Habraken, Mater. Des. 128(2017) 130-142.
DOI URL |
[18] | Q.C. Yang, P. Zhang, L. Cheng, Z. Min, A.C. To, Addit. Manuf. 12(2016) 169-177. |
[19] |
W. Rae, Z. Lomas, M. Jackson, S. Rahimi, Mater. Charact. 132(2017) 10-19.
DOI URL |
[20] |
J. Cao, M.A. Gharghouri, P. Nash, J. Mater. Process. Technol. 237(2016) 409-419.
DOI URL |
[21] |
C. Li, Z.Y. Liu, X.Y. Fang, Y.B. Guo, Proc. CIRP 71 (2018) 348-353.
DOI URL |
[22] | Z. Luo, Y.Y. Zhao, Addit. Manuf. 21(2018) 318-332. |
[23] |
X.P. Tan, Y.H. Kok, Y.J. Tan, G. Vastola, C.K. Chua, J. Alloys. Compd. 646(2015) 303-309.
DOI URL |
[24] |
Y. Huang, L.J. Yang, X.Z. Du, Y.P. Yang, Int. J. Therm. Sci. 104(2016) 146-157.
DOI URL |
[25] | J. Romano, L. Ladani, J. Razmi, M. Sadowski, Addit. Manuf. 8(2015) 1-11. |
[26] | G. Vastola, G. Zhang, Q.X. Pei, Y.W. Zhang, Addit. Manuf. 12(2016) 231-239. |
[27] |
A.S. Wu, D.W. Brown, M. Kumar, G.F. Gallegos, W.E. King, Metall. Mater. Trans. A 45 (2014) 6260-6270.
DOI URL |
[28] |
M. Boivineau, C. Cagran, D. Doytier, V. Eyraud, M.-H. Nadal, B. Wilthan, G. Pot-tlacher, Int. J. Thermophys. 27(2006) 507-529.
DOI URL |
[29] |
E. Kaschnitz, P. Reiter, J.L. Mcclure, Int. J. Thermophys. 23(2002) 267-275.
DOI URL |
[30] | J.L. Bartlett, X.D. Li, Addit. Manuf. 27(2019) 131-149. |
[31] | D.J. Smith, G. Zheng, P.R. Hurrell, C.M. Gill, E. Kingston, Inter. J. Press. Vessels Piping 120-121(2014) 66-79. |
[1] | Patryk Jedrasiak, Hugh Shercliff. Finite element analysis of small-scale hot compression testing [J]. J. Mater. Sci. Technol., 2021, 76(0): 174-188. |
[2] | Pan Wang, Xinwei Li, Shumin Luo, Mui Ling Sharon Nai, Jun Ding, Jun Wei. Additively manufactured heterogeneously porous metallic bone with biostructural functions and bone-like mechanical properties [J]. J. Mater. Sci. Technol., 2021, 62(0): 173-179. |
[3] | Jiahao Cheng, Xiaohua Hu, Xin Sun, Anupam Vivek, Glenn Daehn, David Cullen. Multi-scale characterization and simulation of impact welding between immiscible Mg/steel alloys [J]. J. Mater. Sci. Technol., 2020, 59(0): 149-163. |
[4] | Liang Lan, Xinyuan Jin, Shuang Gao, Bo He, Yonghua Rong. Microstructural evolution and stress state related to mechanical properties of electron beam melted Ti-6Al-4V alloy modified by laser shock peening [J]. J. Mater. Sci. Technol., 2020, 50(0): 153-161. |
[5] | Liao Wang, Shujun Li, Mengning Yan, Yubo Cheng, Wentao Hou, Yiping Wang, Songtao Ai, Rui Yang, Kerong Dai. Fatigue properties of titanium alloy custom short stems fabricated by electron beam melting [J]. J. Mater. Sci. Technol., 2020, 52(0): 180-188. |
[6] | S.H. Chen, T. Li, W.J. Chang, H.D. Yang, J.C. Zhang, H.H. Tang, S.D. Feng, F.F. Wu, Y.C Wu. On the formation of shear bands in a metallic glass under tailored complex stress fields [J]. J. Mater. Sci. Technol., 2020, 53(0): 112-117. |
[7] | X.X. Zhang, L.H. Wu, H. Andrä, W.M. Gan, M. Hofmann, D. Wang, D.R. Ni, B.L. Xiao, Z.Y. Ma. Effects of welding speed on the multiscale residual stresses in friction stir welded metal matrix composites [J]. J. Mater. Sci. Technol., 2019, 35(5): 824-832. |
[8] | Lawrence E.Murr. Strategies for creating living, additively manufactured, open-cellular metal and alloy implants by promoting osseointegration, osteoinduction and vascularization: An overview [J]. J. Mater. Sci. Technol., 2019, 35(2): 231-241. |
[9] | Neng Li, Shuai Huang, Guodong Zhang, Renyao Qin, Wei Liu, Huaping Xiong, Gongqi Shi, Jon Blackburn. Progress in additive manufacturing on new materials: A review [J]. J. Mater. Sci. Technol., 2019, 35(2): 242-269. |
[10] | Kun Yang, Jian Wang, Liang Jia, Guangyu Yang, Huiping Tang, Yuanyuan Li. Additive manufacturing of Ti-6Al-4V lattice structures with high structural integrity under large compressive deformation [J]. J. Mater. Sci. Technol., 2019, 35(2): 303-308. |
[11] | Zhou Xiaochen, Yang Fan, Gong Xiaoyan, Zhao Ming, Zheng Yufeng, Sun Zhili. Development of new endovascular stent-graft system for type B thoracic aortic dissection with finite element analysis and experimental verification [J]. J. Mater. Sci. Technol., 2019, 35(11): 2682-2692. |
[12] | Q. Wen, W.Y. Li, W.B. Wang, F.F. Wang, Y.J. Gao, V. Patel. Experimental and numerical investigations of bonding interface behavior in stationary shoulder friction stir lap welding [J]. J. Mater. Sci. Technol., 2019, 35(1): 192-200. |
[13] | , Ji Xiong, Zhixing Guo, Junliu Ye. Design and preparation of gradient graphite/cermets self-lubricating composites [J]. J. Mater. Sci. Technol., 2018, 34(8): 1378-1386. |
[14] | Xiaomei Liu, Hao Cui, Shangzhou Zhang, Haipo Liu, Gaofeng Liu, Shujun Li. Experimental and numerical investigations on fatigue behavior of aluminum alloy 7050-T7451 single lap four-bolted joints [J]. J. Mater. Sci. Technol., 2018, 34(7): 1205-1213. |
[15] | S.Mironov, Y.S.Sato, H.Kokawa. Friction-stir welding and processing of Ti-6Al-4V titanium alloy: A review [J]. J. Mater. Sci. Technol., 2018, 34(1): 58-72. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||