J. Mater. Sci. Technol. ›› 2020, Vol. 41: 191-198.DOI: 10.1016/j.jmst.2019.08.041
• Research Article • Previous Articles Next Articles
Wei Xua, Xin Lua*(), Jingjing Tianb, Chao Huanga, Miao Chena, Yu Yana, Luning Wanga, Xuanhui Qua, Cuie Wenc
Received:
2019-07-10
Revised:
2019-08-11
Accepted:
2019-08-26
Published:
2020-03-15
Online:
2020-04-10
Contact:
Lu Xin
Wei Xu, Xin Lu, Jingjing Tian, Chao Huang, Miao Chen, Yu Yan, Luning Wang, Xuanhui Qu, Cuie Wen. Microstructure, wear resistance, and corrosion performance of Ti35Zr28Nb alloy fabricated by powder metallurgy for orthopedic applications[J]. J. Mater. Sci. Technol., 2020, 41: 191-198.
Chemical composition (wt.%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Ti | N | C | O | H | Fe | Al | V | Ni | Nb | Zr |
Bal. | 0.006 | 0.03 | 0.16 | 0.003 | 0.02 | 0.03 | 0.01 | 0.01 | 27.7 | 35.4 |
Table 1 The chemical compositions of the Ti35Zr28Nb alloy.
Chemical composition (wt.%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Ti | N | C | O | H | Fe | Al | V | Ni | Nb | Zr |
Bal. | 0.006 | 0.03 | 0.16 | 0.003 | 0.02 | 0.03 | 0.01 | 0.01 | 27.7 | 35.4 |
Fig. 3. Open-circuit potential vs. time for as-cast pure Ti, as-cast Ti6Al4V and PM-fabricated Ti35Zr28Nb specimens in naturally aerated SBF solution at 37 ± 0.5 °C.
Fig. 4. Potentiodynamic polarization curves for as-cast pure Ti, as-cast Ti6Al4V, and PM-fabricated Ti35Zr28Nb specimens in naturally aerated SBF solution at 37 ± 0.5 °C.
Parameters | CP-Ti | Ti6Al4V | Ti35Zr28Nb |
---|---|---|---|
Ecorr (V vs. SCE) | -0.27 ± 0.03 | -0.31 ± 0.02 | -0.22 ± 0.01 |
Icorr (nA cm-2) | 63.31 ± 1.21 | 95.31 ± 1.56 | 57.45 ± 1.88 |
Ip (μA cm-2) | 2.01 ± 0.04 | 2.19 ± 0.06 | 1.88 ± 0.05 |
Eb (V vs. SCE) | 1.33 ± 0.07 | 1.21 ± 0.06 | 1.34 ± 0.07 |
Ep (V) | 0.29 ± 0.03 | 0.23 ± 0.02 | 0.05 ± 0.01 |
Ep-Eb (V) | 1.04 ± 0.07 | 0.98 ± 0.05 | 1.29 ± 0.09 |
Table 2 Extracted corrosion parameters from potentiodynamic polarization for as-cast pure Ti, as-cast Ti6Al4V and PM-fabricated Ti35Zr28Nb specimens in naturally aerated SBF solution at 37 ± 0.5 °C.
Parameters | CP-Ti | Ti6Al4V | Ti35Zr28Nb |
---|---|---|---|
Ecorr (V vs. SCE) | -0.27 ± 0.03 | -0.31 ± 0.02 | -0.22 ± 0.01 |
Icorr (nA cm-2) | 63.31 ± 1.21 | 95.31 ± 1.56 | 57.45 ± 1.88 |
Ip (μA cm-2) | 2.01 ± 0.04 | 2.19 ± 0.06 | 1.88 ± 0.05 |
Eb (V vs. SCE) | 1.33 ± 0.07 | 1.21 ± 0.06 | 1.34 ± 0.07 |
Ep (V) | 0.29 ± 0.03 | 0.23 ± 0.02 | 0.05 ± 0.01 |
Ep-Eb (V) | 1.04 ± 0.07 | 0.98 ± 0.05 | 1.29 ± 0.09 |
Fig. 5. (a) Nyquist, and (b) Bode plots for as-cast pure Ti, as-cast Ti6Al4V and PM-fabricated Ti35Zr28Nb specimens in naturally aerated SBF solution at 37 ± 0.5 °C compared with the simulation results.
Fig. 6. Randle equivalent circuit for simulation results of impedance spectra of as-cast pure Ti, as-cast Ti6Al4V and PM-fabricated Ti35Zr28Nb specimens in naturally aerated SBF solution at 37 ± 0.5 °C.
Alloys | Rs (Ω cm2) | Qb (μF cm-2) | nb | Rp (MΩ cm2) | χ2 (10-4) |
---|---|---|---|---|---|
Pure Ti | 99.89 ± 1.76 | 2.91 ± 0.25 | 0.91 ± 0.11 | 2.56 ± 0.09 | 7.25 ± 0.15 |
Ti6Al4V | 87.72 ± 3.22 | 3.83 ± 0.29 | 0.88 ± 0.12 | 0.58 ± 0.08 | 7.88 ± 0.21 |
Ti35Zr28Nb | 95.45 ± 1.51 | 2.66 ± 0.35 | 0.92 ± 0.15 | 10.24 ± 0.18 | 4.31 ± 0.36 |
Table 3 Fitting parameters from EIS for as-cast pure Ti, as-cast Ti6Al4V and PM-fabricated Ti35Zr28Nb specimens in naturally aerated SBF solution at 37 ± 0.5 °C.
Alloys | Rs (Ω cm2) | Qb (μF cm-2) | nb | Rp (MΩ cm2) | χ2 (10-4) |
---|---|---|---|---|---|
Pure Ti | 99.89 ± 1.76 | 2.91 ± 0.25 | 0.91 ± 0.11 | 2.56 ± 0.09 | 7.25 ± 0.15 |
Ti6Al4V | 87.72 ± 3.22 | 3.83 ± 0.29 | 0.88 ± 0.12 | 0.58 ± 0.08 | 7.88 ± 0.21 |
Ti35Zr28Nb | 95.45 ± 1.51 | 2.66 ± 0.35 | 0.92 ± 0.15 | 10.24 ± 0.18 | 4.31 ± 0.36 |
Fig. 7. High resolution XPS spectra of CP Ti, Ti-6Al-4V and Ti35Zr28Nb in SBF after potentiodynamic polarization tests (a) Ti 2p, (b) O 1s, (c) Al 2p, (d) Nb 3d, (e) Zr 3d.
Specimens | Ti2p | Nb3d | Zr3d | O1s | Al2p |
---|---|---|---|---|---|
Ti35Zr28Nb | 458.6 ± 0.1 464.5 ± 0.2 | 207.1 ± 0.3 210.2 ± 0.1 | 182.3 ± 0.5 185.3 ± 0.3 | 530.5 ± 0.2 532.2 ± 0.2 | - |
Pure Ti | 458.3 ± 0.5 464.4 ± 0.1 | - | - | 530.4 ± 0.3 532.1 ± 0.1 | - |
Ti6Al4V | 458.5 ± 0.4 464.3 ± 0.2 | - | - | 530.3 ± 0.4 532.2 ± 0.2 | 74.2 ± 0.2 |
Table 4 XPS results of binding energies at surfaces after potentiodynamic polarization tests of the as-cast pure Ti, as-cast Ti6Al4V and PM-fabricated Ti35Zr28Nb (eV).
Specimens | Ti2p | Nb3d | Zr3d | O1s | Al2p |
---|---|---|---|---|---|
Ti35Zr28Nb | 458.6 ± 0.1 464.5 ± 0.2 | 207.1 ± 0.3 210.2 ± 0.1 | 182.3 ± 0.5 185.3 ± 0.3 | 530.5 ± 0.2 532.2 ± 0.2 | - |
Pure Ti | 458.3 ± 0.5 464.4 ± 0.1 | - | - | 530.4 ± 0.3 532.1 ± 0.1 | - |
Ti6Al4V | 458.5 ± 0.4 464.3 ± 0.2 | - | - | 530.3 ± 0.4 532.2 ± 0.2 | 74.2 ± 0.2 |
Fig. 8. (a) wear rate and wear volumetric loss, and (b) friction coefficient curves of as-cast pure Ti, as-cast Ti6Al4V and PM-fabricated Ti35Zr28Nb specimens.
Fig. 9. Morphologies of worn surfaces generated and corresponding wear debris images of the Ti specimens after wear tests: (a) and (d) PM-fabricated Ti35Zr28Nb, (b) and (e) as-cast Ti, (c) and (f) as-cast Ti6Al4V.
|
[1] | J.C. Wang, Y.J. Liu, S.X. Liang, Y.S. Zhang, L.Q. Wang, T.B. Sercombe, L.C. Zhang. Comparison of microstructure and mechanical behavior of Ti-35Nb manufactured by laser powder bed fusion from elemental powder mixture and prealloyed powder [J]. J. Mater. Sci. Technol., 2022, 105(0): 1-16. |
[2] | Ahmad Zafari, Edward Wen Chiek Lui, Mogeng Li, Kenong Xia. Enhancing work hardening and ductility in additively manufactured β Ti: roles played by grain orientation, morphology and substructure [J]. J. Mater. Sci. Technol., 2022, 105(0): 131-141. |
[3] | Lianbo Wang, Shilong Xing, Zizhen Shen, Huabing Liu, Chuanhai Jiang, Vincent Ji, Yuantao Zhao. The synergistic role of Ti microparticles and CeO2 nanoparticles in tailoring microstructures and properties of high-quality Ni matrix nanocomposite coating [J]. J. Mater. Sci. Technol., 2022, 105(0): 182-193. |
[4] | Zheng Zhang, Wenming Jiang, Guangyu Li, Junlong Wang, Feng Guan, Guoliang Jie, Zitian Fan. Effect of La on microstructure, mechanical properties and fracture behavior of Al/Mg bimetallic interface manufactured by compound casting [J]. J. Mater. Sci. Technol., 2022, 105(0): 214-225. |
[5] | Guanshui Ma, Dong Zhang, Peng Guo, Hao Li, Yang Xin, Zhenyu Wang, Aiying Wang. Phase orientation improved the corrosion resistance and conductivity of Cr2AlC coatings for metal bipolar plates [J]. J. Mater. Sci. Technol., 2022, 105(0): 36-44. |
[6] | Bo Hu, Zixin Li, Dejiang Li, Tao Ying, Xiaoqin Zeng, Wenjiang Ding. A hot tearing criterion based on solidification microstructure in cast alloys [J]. J. Mater. Sci. Technol., 2022, 105(0): 68-80. |
[7] | Gang Niu, Hatem S. Zurob, R.D.K. Misra, Huibin Wu, Yu Zou. Strength-ductility synergy in a 1.4 GPa austenitic steel with a heterogeneous lamellar microstructure [J]. J. Mater. Sci. Technol., 2022, 106(0): 133-138. |
[8] | Jinlong Su, Xiankun Ji, Jin Liu, Jie Teng, Fulin Jiang, Dingfa Fu, Hui Zhang. Revealing the decomposition mechanisms of dislocations and metastable α' phase and their effects on mechanical properties in a Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2022, 107(0): 136-148. |
[9] | Dina Bayoumy, Kwangsik Kwak, Torben Boll, Stefan Dietrich, Daniel Schliephake, Jie Huang, Junlan Yi, Kazuki Takashima, Xinhua Wu, Yuman Zhu, Aijun Huang. Origin of non-uniform plasticity in a high-strength Al-Mn-Sc based alloy produced by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 103(0): 121-133. |
[10] | Gang Zhou, Yan Yang, Hanzhu Zhang, Faping Hu, Xueping Zhang, Chen Wen, Weidong Xie, Bin Jiang, Xiaodong Peng, Fusheng Pan. Microstructure and strengthening mechanism of hot-extruded ultralight Mg-Li-Al-Sn alloys with high strength [J]. J. Mater. Sci. Technol., 2022, 103(0): 186-196. |
[11] | Zs. Veres, A. Roósz, A. Rónaföldi, A. Sycheva, M. Svéda. The effect of melt flow induced by RMF on the meso- and micro-structure of unidirectionally solidified Al-7wt.% Si alloy Benchmark experiment under magnetic stirring [J]. J. Mater. Sci. Technol., 2022, 103(0): 197-208. |
[12] | Lei Li, Huanzheng Jiao, Congfu Liu, Lin Yang, Yusong Suo, Ruixue Zhang, Tie Liu, Jianzhong Cui. Microstructures, mechanical properties and in vitro corrosion behavior of biodegradable Zn alloys microalloyed with Al, Mn, Cu, Ag and Li elements [J]. J. Mater. Sci. Technol., 2022, 103(0): 244-260. |
[13] | J. Ding, A. Inoue, F.L. Kong, S.L. Zhu, Y.L. Pu, E. Shalaan, A.A. Al-Ghamdi, A.L. Greer. Novel heating-and deformation-induced phase transitions and mechanical properties for multicomponent Zr50M50, Zr50(M,Ag)50 and Zr50(M,Pd)50 (M = Fe,Co,Ni,Cu) amorphous alloys [J]. J. Mater. Sci. Technol., 2022, 104(0): 109-118. |
[14] | Zhongwu Liu, Jiayi He, Qing Zhou, Youlin Huang, Qingzheng Jiang. Development of non-rare earth grain boundary modification techniques for Nd-Fe-B permanent magnets [J]. J. Mater. Sci. Technol., 2022, 98(0): 51-61. |
[15] | Yanxi Li, Pengfei Gao, Jingyue Yu, Shuo Jin, Shuqun Chen, Mei Zhan. Mesoscale deformation mechanisms in relation with slip and grain boundary sliding in TA15 titanium alloy during tensile deformation [J]. J. Mater. Sci. Technol., 2022, 98(0): 72-86. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||