J. Mater. Sci. Technol. ›› 2020, Vol. 40: 185-195.DOI: 10.1016/j.jmst.2019.09.023
Previous Articles Next Articles
Yujuan Lia, Yingkang Weia, Xiaotao Luoa*(), Changjiu Lia*(
), Ninshu Mab
Received:
2019-07-14
Revised:
2019-09-01
Accepted:
2019-09-23
Published:
2020-03-01
Online:
2020-04-01
Contact:
Luo Xiaotao,Li Changjiu
Yujuan Li, Yingkang Wei, Xiaotao Luo, Changjiu Li, Ninshu Ma. Correlating particle impact condition with microstructure and properties of the cold-sprayed metallic deposits[J]. J. Mater. Sci. Technol., 2020, 40: 185-195.
Main gas pressure / MPa | Carrier gas pressure / MPa | Gas temperature / oC | Powder feeding rate / g min-1 | Gun traverse speed / mm s-1 | Stand-off distance / mm | |
---|---|---|---|---|---|---|
low | 2.5 | 2.6 | 500 | 120 | 300 | 20 |
Medium | 3.0 | 3.1 | 800 | 120 | 300 | 20 |
High | 5.0 | 5.1 | 800 | 120 | 300 | 20 |
Table 1 Cold spray parameters for deposit preparation.
Main gas pressure / MPa | Carrier gas pressure / MPa | Gas temperature / oC | Powder feeding rate / g min-1 | Gun traverse speed / mm s-1 | Stand-off distance / mm | |
---|---|---|---|---|---|---|
low | 2.5 | 2.6 | 500 | 120 | 300 | 20 |
Medium | 3.0 | 3.1 | 800 | 120 | 300 | 20 |
High | 5.0 | 5.1 | 800 | 120 | 300 | 20 |
Fig. 3. Measured velocity distributions of in-flight particles at different spraying parameters by a commercial thermal spray particle diagnostic DPV 2000: (a) 2.5 MPa ×500 °C, (b) 3 MPa ×800 °C and (c) 5 MPa ×800 °C.
Fig. 5. Microstructure of the deposits prepared at different particle impact velocities showing difference in deformation degree of particles, (a) and (b) 578 m s-1, (c) and (d) 745 m s-1, (e) and (f) 807 m s-1.
Fig. 7. Through-thickness interface densities of deposits produced at different particle impact velocities measured from the etched cross sections of deposits.
Fig. 8. Bright-fielder TEM images and EDS mapping images at center of inter-particle interface in specimens sprayed at 578 m s-1 (a, b, c and d) and 807 m s-1 (e, f, g and h); (a) and (e) SEM image, (b) and (f)TEM image, (c) and (g) STEM-EDS element maps of Cu, (d) and (h) STEM-EDS element maps of oxygen.
Average particle impact velocity /ms-1 | Tensile strength in depositing direction /MPa | Elastic modulus in depositing direction /GPa |
---|---|---|
578 | 25.8 ± 5.5 | 50.1 ± 2.5 |
745 | 86.8 ± 7.9 | 69.2 ± 1.5 |
807 | 148.5 ± 8.2 | 90.4 ± 1.1 |
Table 2 Tensile strength and elastic modulus of the deposits produced at different particle impact velocities.
Average particle impact velocity /ms-1 | Tensile strength in depositing direction /MPa | Elastic modulus in depositing direction /GPa |
---|---|---|
578 | 25.8 ± 5.5 | 50.1 ± 2.5 |
745 | 86.8 ± 7.9 | 69.2 ± 1.5 |
807 | 148.5 ± 8.2 | 90.4 ± 1.1 |
Fig. 10. Fracture surface morphologies of samples produced at different particle impact velocities along through-thickness direction; (a) and (b) 578 m s-1, (c) and (d) 745 m s-1, (e) and (f) 807 m s-1.
Fig. 11. Thermal (a) and electrical (b) conductivities of deposit samples prepared at different particle impact velocities along through-thickness direction. The blue line represents the thermal conductivity of annealed high purity Cu at 20 °C and red marks present the observed data.
Fig. 13. A simplified structure of deposit (a) and corresponding equivalent electrical circuit (b) of structure unit in the through-thickness direction.
Impact velocity | Ls / m | ts / m | ti / m | ρ / Ω·m | Rs / Ω | RPI / Ω | R / Ω |
---|---|---|---|---|---|---|---|
578 m s-1 | 33.6 | 10.5 | 0.1 | 0.0172 | 0.000155 | 0.000063 | 0.00129 |
745 m s-1 | 42.0 | 6.9 | 0.1 | 0.0172 | 0.000065 | 0.000011 | 0.00096 |
807 m s-1 | 53.2 | 4.8 | 0.1 | 0.0172 | 0.000025 | 0.000004 | 0.00087 |
Table 3 The measured dimensions and estimated electrical properties for the splats.
Impact velocity | Ls / m | ts / m | ti / m | ρ / Ω·m | Rs / Ω | RPI / Ω | R / Ω |
---|---|---|---|---|---|---|---|
578 m s-1 | 33.6 | 10.5 | 0.1 | 0.0172 | 0.000155 | 0.000063 | 0.00129 |
745 m s-1 | 42.0 | 6.9 | 0.1 | 0.0172 | 0.000065 | 0.000011 | 0.00096 |
807 m s-1 | 53.2 | 4.8 | 0.1 | 0.0172 | 0.000025 | 0.000004 | 0.00087 |
|
[1] | Shuaihang Qiu, Mingliang Li, Gang Shao, Hailong Wang, Jinpeng Zhu, Wen Liu, Bingbing Fan, Hongliang Xu, Hongxia Lu, Yanchun Zhou, Rui Zhang. (Ca,Sr,Ba)ZrO3: A promising entropy-stabilized ceramic for titanium alloys smelting [J]. J. Mater. Sci. Technol., 2021, 65(0): 82-88. |
[2] | Chaoyue Chen, Yingchun Xie, Longtao Liu, Ruixin Zhao, Xiaoli Jin, Shanqing Li, Renzhong Huang, Jiang Wang, Hanlin Liao, Zhongming Ren. Cold spray additive manufacturing of Invar 36 alloy: microstructure, thermal expansion and mechanical properties [J]. J. Mater. Sci. Technol., 2021, 72(0): 39-51. |
[3] | Yuankui Cao, Weidong Zhang, Bin Liu, Yong Liu, Meng Du, Ao Fu. Phase decomposition behavior and its effects on mechanical properties of TiNbTa0.5ZrAl0.5 refractory high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 66(0): 10-20. |
[4] | Changhong Cai, Marta M. Alves, Renbo Song, Yongjin Wang, Jingyuan Li, M. Fátima Montemor. Non-destructive corrosion study on a magnesium alloy with mechanical properties tailored for biodegradable cardiovascular stent applications [J]. J. Mater. Sci. Technol., 2021, 66(0): 128-138. |
[5] | Xiao-Tao Luo, Yi Ge, Yingchun Xie, Yingkang Wei, Renzhong Huang, Ninshu Ma, Chidambaram Seshadri Ramachandran, Chang-Jiu Li. Dynamic evolution of oxide scale on the surfaces of feed stock particles from cracking and segmenting to peel-off while cold spraying copper powder having a high oxygen content [J]. J. Mater. Sci. Technol., 2021, 67(0): 105-115. |
[6] | H. Niu, H.C. Jiang, M.J. Zhao, L.J. Rong. Effect of interlayer addition on microstructure and mechanical properties of NiTi/stainless steel joint by electron beam welding [J]. J. Mater. Sci. Technol., 2021, 61(0): 16-24. |
[7] | Z. Zhen, H. Wang, C.Y. Teng, C.G. Bai, D.S. Xu, R. Yang. Dislocation self-interaction in TiAl: Evolution of super-dislocation dipoles revealed by atomistic simulations [J]. J. Mater. Sci. Technol., 2021, 69(0): 138-147. |
[8] | S.J. Wu, Z.Q. Liu, R.T. Qu, Z.F. Zhang. Designing metallic glasses with optimal combinations of glass-forming ability and mechanical properties [J]. J. Mater. Sci. Technol., 2021, 67(0): 254-264. |
[9] | Dongdong Dong, Cheng Chang, Hao Wang, Xingchen Yan, Wenyou Ma, Min Liu, Sihao Deng, Julien Gardan, Rodolphe Bolot, Hanlin Liao. Selective laser melting (SLM) of CX stainless steel: Theoretical calculation, process optimization and strengthening mechanism [J]. J. Mater. Sci. Technol., 2021, 73(0): 151-164. |
[10] | Raymond Kwesi Nutor, Q.P. Cao, X.D. Wang, D.X. Zhang, J.Z. Jiang. Tunability of the mechanical properties of (Fe50Mn27Ni10Cr13)100-xMox high-entropy alloys via secondary phase control [J]. J. Mater. Sci. Technol., 2021, 73(0): 210-217. |
[11] | Chendong Zhao, Jinshan Li, Yudong Liu, William Yi Wang, Hongchao Kou, Eric Beaugnon, Jun Wang. Tailoring mechanical and magnetic properties of AlCoCrFeNi high-entropy alloy via phase transformation [J]. J. Mater. Sci. Technol., 2021, 73(0): 83-90. |
[12] | Kun Wang, Xian Tong, Jixing Lin, Aiping Wei, Yuncang Li, Matthew Dargusch, Cuie Wen. Binary Zn-Ti alloys for orthopedic applications: Corrosion and degradation behaviors, friction and wear performance, and cytotoxicity [J]. J. Mater. Sci. Technol., 2021, 74(0): 216-229. |
[13] | Jiang Yang, Honggang Dong, Yueqing Xia, Peng Li, Xiaohu Hao, Yaqiang Wang, Wei Wu, Baosen Wang. Carbide precipitates and mechanical properties of medium Mn steel joint with metal inert gas welding [J]. J. Mater. Sci. Technol., 2021, 75(0): 48-58. |
[14] | Nan Sun, Pei-Long Li, Ming Wen, Jiang-Feng Song, Zhi Zhang, Wen-Bin Yang, Yuan-Lin Zhou, De-Li Luo, Quan-Ping Zhang. Insights into heat management of hydrogen adsorption for improved hydrogen isotope separation of porous materials [J]. J. Mater. Sci. Technol., 2021, 76(0): 200-206. |
[15] | Yaxin Xu, Wenya Li, Longzhen Qu, Xiawei Yang, Bo Song, Rocco Lupoi, Shuo Yin. Solid-state cold spraying of FeCoCrNiMn high-entropy alloy: an insight into microstructure evolution and oxidation behavior at 700-900 °C [J]. J. Mater. Sci. Technol., 2021, 68(0): 172-183. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||