J. Mater. Sci. Technol. ›› 2020, Vol. 40: 196-203.DOI: 10.1016/j.jmst.2019.08.032
Poulami Hotaa, Milon Miaha,1, Saptasree Bosea,1, Diptiman Dindaab, Uttam K. Ghoraic, Yan-Kuin Sud, Shyamal K. Sahaa*()
Received:
2019-06-06
Revised:
2019-08-05
Accepted:
2019-08-29
Published:
2020-03-01
Online:
2020-04-01
Contact:
Saha Shyamal K.
About author:
1Authors contributed equally to this work.
Poulami Hota, Milon Miah, Saptasree Bose, Diptiman Dinda, Uttam K. Ghorai, Yan-Kuin Su, Shyamal K. Saha. Ultra-small amorphous MoS2 decorated reduced graphene oxide for supercapacitor application[J]. J. Mater. Sci. Technol., 2020, 40: 196-203.
Fig. 1. (a) X-ray diffraction patterns of graphene oxide (GO), (b) aMoS2(L)-RGO composite and (c) aMoS2(S)-RGO composite, (d) full range XPS spectra of aMoS2(S)-RGO composite, (e) XPS spectrum of Mo 3d region of aMoS2(S)-RGO composite and (f) deconvoluted spectra of S 2p of aMoS2(S)-RGO composite.
Fig. 2. (a-c) Low-resolution TEM images of aMoS2(L)-RGO composite, (d) SAED patterns of the aMoS2(L)-RGO composite and (e) the corresponding EDS spectrum of aMoS2(L)-RGO composite (the inset shows the atomic percentage of the composite).
Fig. 3. (a) Low-resolution TEM images of aMoS2(S)-RGO composite, (b) high-resolution TEM image of aMoS2(S)-RGO composite, (c) SAED patterns of the aMoS2(S)-RGO composite and (d) the corresponding EDS spectrum of aMoS2(S)-RGO composite (the inset shows the atomic percentage of the elements).
Fig. 5. (a) Galvanostatic charging-discharging behavior of aMoS2(S)-RGO, (b) galvanostatic charging-discharging behavior of aMoS2(S)-RGO for single cycle, (c) charging-discharging behavior of aMoS2(S)-RGO composite at different current density and (d) cyclic voltammograms for the corresponding composite.
Active electrode material | Specific capacitance | Reference |
---|---|---|
MoS2/graphene | 243 F/g (at the current density of 1 A/(g m)) | Ref. [ |
1T/2H Hybrid Ammoniated MoS2 | 346 F/g (at the current density of 1 A/(g m)) | Ref. [ |
Flower-like MoS2 | 122 F/g (at the current density of 1 A/(g m)) | Ref. [ |
α-Fe2O3/rGOcomposite | 255 F/g (at the current density of 1 A/(g m)) | Ref. [ |
Defect-rich MoS2 ultrathin nanosheets | 141.1 F/g (at the current density of 1 A/(g m)) | Ref. [ |
MoSx/GCNT/CP | 414 F/g (at the current density of 0.67 A/(g m)) | Ref. [ |
MnO@C | 578 F/g (at the current density of 1 A/(g m)) | Ref. [ |
aMoS2(S)-RGO composite | 460 F/g (at the current density of 1 A/(g m)) | This work |
aMoS2(L)-RGO composite | 270 F/g (at the current density of 1 A/(g m)) | This work |
Table 1 Comparison of specific capacitance of the present work with previously reported literature.
Active electrode material | Specific capacitance | Reference |
---|---|---|
MoS2/graphene | 243 F/g (at the current density of 1 A/(g m)) | Ref. [ |
1T/2H Hybrid Ammoniated MoS2 | 346 F/g (at the current density of 1 A/(g m)) | Ref. [ |
Flower-like MoS2 | 122 F/g (at the current density of 1 A/(g m)) | Ref. [ |
α-Fe2O3/rGOcomposite | 255 F/g (at the current density of 1 A/(g m)) | Ref. [ |
Defect-rich MoS2 ultrathin nanosheets | 141.1 F/g (at the current density of 1 A/(g m)) | Ref. [ |
MoSx/GCNT/CP | 414 F/g (at the current density of 0.67 A/(g m)) | Ref. [ |
MnO@C | 578 F/g (at the current density of 1 A/(g m)) | Ref. [ |
aMoS2(S)-RGO composite | 460 F/g (at the current density of 1 A/(g m)) | This work |
aMoS2(L)-RGO composite | 270 F/g (at the current density of 1 A/(g m)) | This work |
Fig. 6. (a) Nyquist plot of aMoS2(S)-RGO composite and aMoS2(L)-RGO composite; Inset shows the zoomed view of the Nyquist plot in the high-frequency region and (b) cyclic performance of aMoS2(S)-RGO composite measured at a current density of 1 A/g over 5000 cycles.
|
[1] | Xuemin Yin, Hejun Li, Ruimei Yuan, Jinhua Lu. NiCoLDH nanosheets grown on MOF-derived Co3O4 triangle nanosheet arrays for high-performance supercapacitor [J]. J. Mater. Sci. Technol., 2021, 62(0): 60-69. |
[2] | Xu Bao, Wei-Bin Zhang, Qiang Zhang, Lun Zhang, Xue-Jing Ma, Jianping Long. Interlayer material technology of manganese phosphate toward and beyond electrochemical pseudocapacitance over energy storage application [J]. J. Mater. Sci. Technol., 2021, 71(0): 109-128. |
[3] | Yiwen Hong, Jingli Xu, Jin Suk Chung, Won Mook Choi. Graphene quantum dots/Ni(OH)2 nanocomposites on carbon cloth as a binder-free electrode for supercapacitors [J]. J. Mater. Sci. Technol., 2020, 58(0): 73-79. |
[4] | Licheng Zhao, Ping Zhang, Yanan Zhang, Zhi Zhang, Lei Yang, Zhi-Gang Chen. Facile synthesis of hierarchical Ni3Se2 nanodendrite arrays for supercapacitors [J]. J. Mater. Sci. Technol., 2020, 54(0): 69-76. |
[5] | Jin Kyu Kim, Chang Soo Lee, Jae Hun Lee, Jung Tae Park, Jong Hak Kim. Ni, Co-double hydroxide wire structures with controllable voids for electrodes of energy-storage devices [J]. J. Mater. Sci. Technol., 2020, 55(0): 126-135. |
[6] | Xueying Yang, Cuili Xiang, Yongjin Zou, Jing Liang, Huanzhi Zhang, Erhu Yan, Fen Xu, Xuebu Hu, Qiong Cheng, Lixian Sun. Low-temperature synthesis of sea urchin-like Co-Ni oxide on graphene oxide for supercapacitor electrodes [J]. J. Mater. Sci. Technol., 2020, 55(0): 223-230. |
[7] | Juan Du, Aibing Chen, Yue Zhang, Shuang Zong, Haixia Wu, Lei Liu. PVP-assisted preparation of nitrogen doped mesoporous carbon materials for supercapacitors [J]. J. Mater. Sci. Technol., 2020, 58(0): 197-204. |
[8] | Jing Liang, Cuili Xiang, Yongjin Zou, Xuebu Hu, Hailiang Chu, Shujun Qiu, Fen Xu, Lixian Sun. Spacing graphene and Ni-Co layered double hydroxides with polypyrrole for high-performance supercapacitors [J]. J. Mater. Sci. Technol., 2020, 55(0): 190-197. |
[9] | Guoxiang Pan, Feng Cao, Yujian Zhang, Xinhui Xia. N-doped carbon nanofibers arrays as advanced electrodes for supercapacitors [J]. J. Mater. Sci. Technol., 2020, 55(0): 144-151. |
[10] | Yin Liu, Cuili Xiang, Hailiang Chu, Shujun Qiu, Jennifer McLeod, Zhe She, Fen Xu, Lixian Sun, Yongjin Zou. Binary Co-Ni oxide nanoparticle-loaded hierarchical graphitic porous carbon for high-performance supercapacitors [J]. J. Mater. Sci. Technol., 2020, 37(0): 135-142. |
[11] | Han Wu, Jingdong Guo, De’an Yang. Facile autoreduction synthesis of core-shell Bi-Bi2O3/CNT with 3-dimensional neural network structure for high-rate performance supercapacitor [J]. J. Mater. Sci. Technol., 2020, 47(0): 169-176. |
[12] | Tao Liu, Jiahao Liu, Liuyang Zhang, Bei Cheng, Jiaguo Yu. Construction of nickel cobalt sulfide nanosheet arrays on carbon cloth for performance-enhanced supercapacitor [J]. J. Mater. Sci. Technol., 2020, 47(0): 113-121. |
[13] | Lu Liu, Xi Hu, Hong-Yan Zeng, Mo-Yu Yi, Shi-Gen Shen, Sheng Xu, Xi Cao, Jin-Ze Du. Preparation of NiCoFe-hydroxide/polyaniline composite for enhanced-performance supercapacitors [J]. J. Mater. Sci. Technol., 2019, 35(8): 1691-1699. |
[14] | Huan Liu, Haijun Yu. Ionic liquids for electrochemical energy storage devices applications [J]. J. Mater. Sci. Technol., 2019, 35(4): 674-686. |
[15] | Juan Du, Lei Liu, Yifeng Yu, Yue Zhang, Haijun Lv, Aibing Chen. N-doped ordered mesoporous carbon spheres derived by confined pyrolysis for high supercapacitor performance [J]. J. Mater. Sci. Technol., 2019, 35(10): 2178-2186. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||