J. Mater. Sci. Technol. ›› 2019, Vol. 35 ›› Issue (11): 2552-2558.DOI: 10.1016/j.jmst.2019.04.032
• Orginal Article • Previous Articles Next Articles
					
													Liu Z.ab, Zhao Z.B.a*( ), Liu J.R.a*(
), Liu J.R.a*( ), Wang L.a, Zhu S.X.a, Yang G.c, Gong S.L.c, Wang Q.J.a, ang R.Ya
), Wang L.a, Zhu S.X.a, Yang G.c, Gong S.L.c, Wang Q.J.a, ang R.Ya
												  
						
						
						
					
				
Received:2018-12-20
															
							
																	Revised:2019-03-18
															
							
																	Accepted:2019-04-10
															
							
																	Online:2019-11-05
															
							
																	Published:2019-10-21
															
						Contact:
								Zhao Z.B.,Liu J.R.   
													About author:1The authors equally contributed to this work.
Liu Z., Zhao Z.B., Liu J.R., Wang L., Zhu S.X., Yang G., Gong S.L., Wang Q.J., ang R.Y. Deformation behaviors of as-built and hot isostatically pressed Ti-6Al-4V alloys fabricated via electron beam rapid manufacturing[J]. J. Mater. Sci. Technol., 2019, 35(11): 2552-2558.
| Sample | Yield strength, σ0.2 (MPa) | Ultimate strength, σt (MPa) | Elongation (%) | 
|---|---|---|---|
| As-built | 810 ± 5.0 | 897 ± 4.6 | 11 ± 1.2 | 
| HIP | 780 ± 1.5 | 876 ± 3.2 | 14 ± 1.9 | 
Table 1 Tensile properties of EBRM-produced Ti-6Al-4 V alloy.
| Sample | Yield strength, σ0.2 (MPa) | Ultimate strength, σt (MPa) | Elongation (%) | 
|---|---|---|---|
| As-built | 810 ± 5.0 | 897 ± 4.6 | 11 ± 1.2 | 
| HIP | 780 ± 1.5 | 876 ± 3.2 | 14 ± 1.9 | 
 
																													Fig. 5. Examples of activated slip systems in the tensile sample after 2.0% plastic deformation. The black and red lines represent calculated traces of prismatic and basal slips, respectively.
 
																													Fig. 8. Examples of activated slip systems in the tensile sample after 2.0% plastic deformation (a) and the relative EBSD maps (b). The blue, red, and green lines represent calculated traces of prismatic, basal, and pyramidal slip systems, respectively.
| Lath 1 | Lath 2 | Lath 3 | Lath 4 | |||||
|---|---|---|---|---|---|---|---|---|
| M | μ | M | μ | M | μ | M | μ | |
| Prismatic (1-100)[ | 0.47 | 0.36 | - | <0.25 | 0.20 | 0.31 | 0.21 | 0.33 | 
| Prismatic (1-100)[ | 0.16 | 0.30 | - | <0.25 | 0.35 | 0.47 | 0.35 | 0.38 | 
| Prismatic (1-100)[ | 0.33 | 0.46 | - | <0.25 | 0.21 | 0.37 | 0.13 | 0.46 | 
| Prismatic (1-100)[ | 0.87 | 0.48 | 0.92 | 0.40 | 0.86 | 0.35 | 0.92 | 0.43 | 
Table 2 Maximum M factor between the (1-100)[11-20] slip system and various slip systems in the other α-laths.
| Lath 1 | Lath 2 | Lath 3 | Lath 4 | |||||
|---|---|---|---|---|---|---|---|---|
| M | μ | M | μ | M | μ | M | μ | |
| Prismatic (1-100)[ | 0.47 | 0.36 | - | <0.25 | 0.20 | 0.31 | 0.21 | 0.33 | 
| Prismatic (1-100)[ | 0.16 | 0.30 | - | <0.25 | 0.35 | 0.47 | 0.35 | 0.38 | 
| Prismatic (1-100)[ | 0.33 | 0.46 | - | <0.25 | 0.21 | 0.37 | 0.13 | 0.46 | 
| Prismatic (1-100)[ | 0.87 | 0.48 | 0.92 | 0.40 | 0.86 | 0.35 | 0.92 | 0.43 | 
| Lath 5 | Lath 6 | |||
|---|---|---|---|---|
| M | μ | M | μ | |
| Prismatic (10-10)[- | 0.11 | 0.35 | 0.50 | 0.29 | 
| Prismatic (10-10)[- | 0.87 | 0.43 | 0.87 | 0.40 | 
| Prismatic (10-10)[- | 0.84 | 0.39 | 0.85 | 0.44 | 
| Prismatic (10-10)[- | 0.21 | 0.27 | 0.20 | 0.26 | 
Table 3 Maximum M factor between the (10-10)[-12-10] slip system and various slip systems in the other α-laths.
| Lath 5 | Lath 6 | |||
|---|---|---|---|---|
| M | μ | M | μ | |
| Prismatic (10-10)[- | 0.11 | 0.35 | 0.50 | 0.29 | 
| Prismatic (10-10)[- | 0.87 | 0.43 | 0.87 | 0.40 | 
| Prismatic (10-10)[- | 0.84 | 0.39 | 0.85 | 0.44 | 
| Prismatic (10-10)[- | 0.21 | 0.27 | 0.20 | 0.26 | 
| 
 | 
| [1] | Xiaoxiao Li, Meiqiong Ou, Min Wang, Long Zhang, Yingche Ma, Kui Liu. Effect of boron addition on the microstructure and mechanical properties of K4750 nickel-based superalloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 177-185. | 
| [2] | Hui Jiang, Dongxu Qiao, Wenna Jiao, Kaiming Han, Yiping Lu, Peter K. Liaw. Tensile deformation behavior and mechanical properties of a bulk cast Al0.9CoFeNi2 eutectic high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 119-124. | 
| [3] | Qin Xu, Dezhi Chen, Chongyang Tan, Xiaoqin Bi, Qi Wang, Hongzhi Cui, Shuyan Zhang, Ruirun Chen. NbMoTiVSix refractory high entropy alloys strengthened by forming BCC phase and silicide eutectic structure [J]. J. Mater. Sci. Technol., 2021, 60(0): 1-7. | 
| [4] | Lin Yuan, Jiangtao Xiong, Yajie Du, Jin Ren, Junmiao Shi, Jinglong Li. Microstructure and mechanical properties in the TLP joint of FeCoNiTiAl and Inconel 718 alloys using BNi2 filler [J]. J. Mater. Sci. Technol., 2021, 61(0): 176-185. | 
| [5] | Praveen Sreeramagiri, Ajay Bhagavatam, Abhishek Ramakrishnan, Husam Alrehaili, Guru Prasad Dinda. Design and development of a high-performance Ni-based superalloy WSU 150 for additive manufacturing [J]. J. Mater. Sci. Technol., 2020, 47(0): 20-28. | 
| [6] | Ran Wei, Kaisheng Zhang, Liangbin Chen, Zhenhua Han, Tan Wang, Chen Chen, Jianzhong Jiang, Tingwei Hu, Fushan Li. Novel Co-free high performance TRIP and TWIP medium-entropy alloys at cryogenic temperatures [J]. J. Mater. Sci. Technol., 2020, 57(0): 153-158. | 
| [7] | Wenguang Zhu, Changsheng Tan, Ruoyu Xiao, Qiaoyan Sun, Jun Sun. Slip behavior of Bi-modal structure in a metastable β titanium alloy during tensile deformation [J]. J. Mater. Sci. Technol., 2020, 57(0): 188-196. | 
| [8] | Ji Zou, Hai-Bin Ma, Jing-Jing Liu, Wei-Min Wang, Guo-Jun Zhang, Zheng-Yi Fu. Nanoceramic composites with duplex microstructure break the strength-toughness tradeoff [J]. J. Mater. Sci. Technol., 2020, 58(0): 1-9. | 
| [9] | Kai Liu, Shengcan Ma, Yuxi Zhang, Hai Zeng, Guang Yu, Xiaohua Luo, Changcai Chen, Sajjad Ur Rehman, Yongfeng Hu, Zhenchen Zhong. Magnetic-field-driven reverse martensitic transformation with multiple magneto-responsive effects by manipulating magnetic ordering in Fe-doped Co-V-Ga Heusler alloys [J]. J. Mater. Sci. Technol., 2020, 58(0): 145-154. | 
| [10] | Weiyi Wang, Qinglin Pan, Geng Lin, Xiaoping Wang, Yuqiao Sun, Xiangdong Wang, Ji Ye, Yuanwei Sun, Yi Yu, Fuqing Jiang, Jun Li, Yaru Liu. Microstructure and properties of novel Al-Ce-Sc, Al-Ce-Y, Al-Ce-Zr and Al-Ce-Sc-Y alloy conductors processed by die casting, hot extrusion and cold drawing [J]. J. Mater. Sci. Technol., 2020, 58(0): 155-170. | 
| [11] | Xinyu Ren, Wei Liu, Haishui Ren, Yongjuan Jing, Wei Mao, Huaping Xiong. Microstructures and joining characteristics of NbSS/Nb5Si3 composite joints by newly-developed Ti66-Ni22-Nb12 filler alloy [J]. J. Mater. Sci. Technol., 2020, 58(0): 95-99. | 
| [12] | Kui Wang, Jingfeng Wang, Xiaoxu Dou, Yuanding Huang, Norbert Hort, Sarkis Gavras, Shijie Liu, Yanwu Cai, Jinxing Wang, Fusheng Pan. Microstructure and mechanical properties of large-scale Mg-Gd-Y-Zn-Mn alloys prepared through semi-continuous casting [J]. J. Mater. Sci. Technol., 2020, 52(0): 72-82. | 
| [13] | Timothy Alexander Listyawan, Hyunjong Lee, Nokeun Park. A new guide for improving mechanical properties of non-equiatomic FeCoCrMnNi medium- and high-entropy alloys with ultrasonic nanocrystal surface modification process [J]. J. Mater. Sci. Technol., 2020, 59(0): 37-43. | 
| [14] | Fu-Zhi Dai, Haiming Zhang, Huimin Xiang, Yanchun Zhou. Theoretical investigation on the stability, mechanical and thermal properties of the newly discovered MAB phase Cr4AlB4 [J]. J. Mater. Sci. Technol., 2020, 39(0): 161-166. | 
| [15] | Bin Hu, Xin Tu, Haiwen Luo, Xinping Mao. Effect of warm rolling process on microstructures and tensile properties of 10¬タノMn steel [J]. J. Mater. Sci. Technol., 2020, 47(0): 131-141. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||
 WeChat
			   WeChat
			