J. Mater. Sci. Technol. ›› 2019, Vol. 35 ›› Issue (10): 2227-2231.DOI: 10.1016/j.jmst.2019.05.030
• Orginal Article • Previous Articles Next Articles
Zifan Zhaoab, Huimin Xiang, ZhiDai Fua, Zhijian Pengb**(), Yanchun Zhoua**(
)
Received:
2019-04-15
Online:
2019-10-05
Published:
2019-08-28
Contact:
Peng Zhijian,Zhou Yanchun
Zifan Zhao, Huimin Xiang, ZhiDai Fu, Zhijian Peng, Yanchun Zhou. (TiZrHf)P2O7: An equimolar multicomponent or high entropy ceramic with good thermal stability and low thermal conductivity[J]. J. Mater. Sci. Technol., 2019, 35(10): 2227-2231.
Reflection (hkl) | 2θ (degree) | |||
---|---|---|---|---|
(TiZrHf)P2O7 | TiP2O7 | ZrP2O7 | HfP2O7 | |
111 | 18.929 | 19.541 | 18.691 | 18.775 |
200 | 21.887 | 22.597 | 21.607 | 21.709 |
021 | 24.508 | 25.299 | 24.175 | 24.293 |
112 | 26.893 | 27.761 | 26.520 | 26.654 |
202 | 31.132 | 32.156 | 30.714 | 30.855 |
311 | 36.689 | 37.893 | 36.16 | 36.335 |
222 | 38.384 | 3.6469 | 37.832 | 38.009 |
302 | 40.002 | 41.340 | 39.431 | 39.625 |
400 | 44.595 | 45.245 | 43.945 | 44.159 |
410 | 46.033 | 47.607 | 45.379 | 45.582 |
114 | 47.49 | 49.069 | 46.763 | 46.981 |
313 | 48.852 | 50.507 | 48.123 | 48.342 |
024 | 50.211 | 51.908 | 49.450 | 49.681 |
Table 1 Diffraction angle 2θ and corresponding reflections (hkl) of MP2O7 (M=Ti, Zr, Hf) and (TiZrHf)P2O7 solid solution obtained from experimental XRD patterns.
Reflection (hkl) | 2θ (degree) | |||
---|---|---|---|---|
(TiZrHf)P2O7 | TiP2O7 | ZrP2O7 | HfP2O7 | |
111 | 18.929 | 19.541 | 18.691 | 18.775 |
200 | 21.887 | 22.597 | 21.607 | 21.709 |
021 | 24.508 | 25.299 | 24.175 | 24.293 |
112 | 26.893 | 27.761 | 26.520 | 26.654 |
202 | 31.132 | 32.156 | 30.714 | 30.855 |
311 | 36.689 | 37.893 | 36.16 | 36.335 |
222 | 38.384 | 3.6469 | 37.832 | 38.009 |
302 | 40.002 | 41.340 | 39.431 | 39.625 |
400 | 44.595 | 45.245 | 43.945 | 44.159 |
410 | 46.033 | 47.607 | 45.379 | 45.582 |
114 | 47.49 | 49.069 | 46.763 | 46.981 |
313 | 48.852 | 50.507 | 48.123 | 48.342 |
024 | 50.211 | 51.908 | 49.450 | 49.681 |
Compounds | TiP2O7 | ZrP2O7 | HfP2O7 | (TiZrHf)P2O7 |
---|---|---|---|---|
a (?) | 7.8738 | 8.2528 | 8.2101 | 8.0979 |
M | (0.5, 0.5, 0.5) | (0.5, 0.5, 0.5) | (0.5, 0.5, 0.5) | (0.5, 0.5, 0.5) |
P | (0.1103, 0.1103, 0.1103) | (0.1054, 0.1054, 0.1054) | (0.1073, 0.1073, 0.1073) | (0.1054, 0.1054, 0.1054) |
O1 | (0.0565, 0.2770, 0.0877) | (0.0545, 0.2717, 0.0711) | (0.0543, 0.2738, 0.0714) | (0.0547, 0.2869, 0.0683) |
O2 | (0, 0, 0) | (0, 0, 0) | (0, 0, 0) | (0, 0, 0) |
Table 2 Refined structure parameters of MP2O7 (M= Ti, Zr, Hf) and (TiZrHf)P2O7 solid solution obtained from Rietveld refinement.
Compounds | TiP2O7 | ZrP2O7 | HfP2O7 | (TiZrHf)P2O7 |
---|---|---|---|---|
a (?) | 7.8738 | 8.2528 | 8.2101 | 8.0979 |
M | (0.5, 0.5, 0.5) | (0.5, 0.5, 0.5) | (0.5, 0.5, 0.5) | (0.5, 0.5, 0.5) |
P | (0.1103, 0.1103, 0.1103) | (0.1054, 0.1054, 0.1054) | (0.1073, 0.1073, 0.1073) | (0.1054, 0.1054, 0.1054) |
O1 | (0.0565, 0.2770, 0.0877) | (0.0545, 0.2717, 0.0711) | (0.0543, 0.2738, 0.0714) | (0.0547, 0.2869, 0.0683) |
O2 | (0, 0, 0) | (0, 0, 0) | (0, 0, 0) | (0, 0, 0) |
Fig. 5. (a) Microstructure of the surface of sintered (TiZrHf)P2O7 solid solution compact. (b) Grain size distribution of sintered (TiZrHf)P2O7 solid solution compact.
Compounds | Dth (mm2/s) | Cp (J mol-1 K-1) | ρ (g/cm3) | κ (W m-1 K-1) |
---|---|---|---|---|
TiP2O7 | 0.53 | 155.86 | 2.89 | 1.08 |
ZrP2O7 | 0.50 | 162.00 | 3.01 | 0.92 |
HfP2O7 | 0.41 | 165.86 | 4.09 | 0.79 |
(TiZrHf)P2O7 | 0.43 | 151.32 | 3.35 | 0.78 |
Table 3 Thermal properties and density of (TiZrHf)P2O7 together with those of single component pyrophosphates at room temperature.
Compounds | Dth (mm2/s) | Cp (J mol-1 K-1) | ρ (g/cm3) | κ (W m-1 K-1) |
---|---|---|---|---|
TiP2O7 | 0.53 | 155.86 | 2.89 | 1.08 |
ZrP2O7 | 0.50 | 162.00 | 3.01 | 0.92 |
HfP2O7 | 0.41 | 165.86 | 4.09 | 0.79 |
(TiZrHf)P2O7 | 0.43 | 151.32 | 3.35 | 0.78 |
|
[1] | Xing Zhou, Jingrui Deng, Changqing Fang, Wanqing Lei, Yonghua Song, Zisen Zhang, Zhigang Huang, Yan Li. Additive manufacturing of CNTs/PLA composites and the correlation between microstructure and functional properties [J]. J. Mater. Sci. Technol., 2021, 60(0): 27-34. |
[2] | Gongcheng Yao, Chezheng Cao, Shuaihang Pan, Jie Yuan, Igor De Rosa, Xiaochun Li. Thermally stable ultrafine grained copper induced by CrB/CrB2 microparticles with surface nanofeatures via regular casting [J]. J. Mater. Sci. Technol., 2020, 58(0): 55-62. |
[3] | Shiyi Wen, Yuling Liu, George Kaptay, Yong Du. A new model to describe composition and temperature dependence of thermal conductivity for solution phases in binary alloys [J]. J. Mater. Sci. Technol., 2020, 59(0): 72-82. |
[4] | J.S. Cha, D.H. Kim, H.Y. Hong, K. Park. Enhanced thermoelectric performance of spark plasma sintered p-type Ca3-xYxCo4O9+δ systems [J]. J. Mater. Sci. Technol., 2020, 55(0): 212-222. |
[5] | Zifan Zhao, Heng Chen, Huimin Xiang, Fu-Zhi Dai, Xiaohui Wang, Wei Xu, Kuang Sun, Zhijian Peng, Yanchun Zhou. High-entropy (Y0.2Nd0.2Sm0.2Eu0.2Er0.2)AlO3: A promising thermal/environmental barrier material for oxide/oxide composites [J]. J. Mater. Sci. Technol., 2020, 47(0): 45-51. |
[6] | Yanhui Li, Siwen Wang, Xuewei Wang, Meiling Yin, Wei Zhang. New FeNiCrMo(P, C, B) high-entropy bulk metallic glasses with unusual thermal stability and corrosion resistance [J]. J. Mater. Sci. Technol., 2020, 43(0): 32-39. |
[7] | Qing Du, Xiongjun Liu, Yihuan Cao, Yuren Wen, Dongdong Xiao, Yuan Wu, Hui Wang, Zhaoping Lu. Enhanced crystallization resistance and thermal stability via suppressing the metastable superlattice phase in Ni-(Pd)-P metallic glasses [J]. J. Mater. Sci. Technol., 2020, 42(0): 203-211. |
[8] | H.R. Peng, B.S Liu, F. Liu. A strategy for designing stable nanocrystalline alloys by thermo-kinetic synergy [J]. J. Mater. Sci. Technol., 2020, 43(0): 21-31. |
[9] | Yuling Liu, Cong Zhang, Changfa Du, Yong Du, Zhoushun Zheng, Shuhong Liu, Lei Huang, Shiyi Wen, Youliang Jin, Huaqing Zhang, Fan Zhang, George Kaptay. CALTPP: A general program to calculate thermophysical properties [J]. J. Mater. Sci. Technol., 2020, 42(0): 229-240. |
[10] | Lin Chen, Mingyu Hu, Jun Guo, Xiaoyu Chong, Jing Feng. Mechanical and thermal properties of RETaO4 (RE = Yb, Lu, Sc) ceramics with monoclinic-prime phase [J]. J. Mater. Sci. Technol., 2020, 52(0): 20-28. |
[11] | Mulin Liu, Naoki Takata, Asuka Suzuki, Makoto Kobashi. Development of gradient microstructure in the lattice structure of AlSi10Mg alloy fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2020, 36(0): 106-117. |
[12] | Zhijie Huang, Li Yin, Chaoliang Hu, Jiajun Shen, Tiejun Zhu, Qian Zhang, Kaiyang Xia, Jiazhan Xin, Xinbing Zhao. Low contact resistivity and long-term thermal stability of Nb0.8Ti0.2FeSb/Ti thermoelectric junction [J]. J. Mater. Sci. Technol., 2020, 40(0): 113-118. |
[13] | Yujuan Li, Yingkang Wei, Xiaotao Luo, Changjiu Li, Ninshu Ma. Correlating particle impact condition with microstructure and properties of the cold-sprayed metallic deposits [J]. J. Mater. Sci. Technol., 2020, 40(0): 185-195. |
[14] | F.H. Kuang, S.M. Wang, C. Gao, H.B. Zhang, R.K. Ren, J.L. Ren, J. Tong, Y.M. Liu, J. Liu. Unique microstructure and thermal insulation property of a novel waste-utilized foam ceramic [J]. J. Mater. Sci. Technol., 2020, 48(0): 175-179. |
[15] | Yongbin Hua, Jae Su Yu. Warm white emission of LaSr2F7:Dy3+/Eu3+ NPs with excellent thermal stability for indoor illumination [J]. J. Mater. Sci. Technol., 2020, 54(0): 230-239. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||