J. Mater. Sci. Technol. ›› 2019, Vol. 35 ›› Issue (4): 465-472.DOI: 10.1016/j.jmst.2018.09.069
• Orginal Article • Next Articles
Daudi Waryobaa, Zahabul Islamb, Baoming Wangb, Aman Haqueb*()
Received:
2018-02-11
Revised:
2018-07-19
Accepted:
2018-07-21
Online:
2019-04-05
Published:
2019-01-28
Contact:
Haque Aman
Daudi Waryoba, Zahabul Islam, Baoming Wang, Aman Haque. Low temperature annealing of metals with electrical wind force effects[J]. J. Mater. Sci. Technol., 2019, 35(4): 465-472.
Chemical element | ε(kcal/mol) | σ (?) |
---|---|---|
Fe | 0.013 | 2.912 |
Sn | 0.567 | 4.392 |
Zr | 0.069 | 3.124 |
Table 1 LJ potential parameters for Zr-Sn, Zr-Fe and Sn-Fe interactions.
Chemical element | ε(kcal/mol) | σ (?) |
---|---|---|
Fe | 0.013 | 2.912 |
Sn | 0.567 | 4.392 |
Zr | 0.069 | 3.124 |
Fig. 2. MD simulation specimen of polycrystalline zircaloy-4. Color scheme to highlight: (a) different grain orientations, and (b) atomic composition (blue, green, and red color indicates zirconium, iron and tin, respectively).
Fig. 4. EBSD band contrast showing the microstructure of: (a) as-received, (b) electric-field annealed, and (c) thermal-annealed specimens. Scale bar is 10 μm.
Fig. 5. Grain boundary structure showing LAGBs and HAGs in: (a) as-received, (b) electric-field annealed, and (c) thermal-annealed specimens. Red boundaries are LAGBs (2°≤ θ ≤ 10°), and black boundaries are HAGBs (θ > 10°). Scale bar is 10 μm.
Fig. 7. X-axis inverse pole figure maps showing crystallographic orientations in the: (a) as-received, (b) electric-field annealed, and (c) thermal-annealed specimens. Scale bar is 10 μm.
Fig. 9. MD simulation depicting defective mesh and displacement vector during grain growth: (a) Initial structure, (b) at the end of the electrical annealing, (c) at the end of the thermal annealing, (d) initial displacement vector, (e) displacement vector at the end of the electrical current annealing, and (f) displacement vector at the end of the thermal annealing.
Fig. 10. Time evolution of grain growth: (a) Initial structure, (b) electrical annealing at 125 ps, (c) electrical annealing at 250 ps, (d) thermal annealing at 250 ps, and (e) thermal annealing at 500 ps.
Fig. 12. Demonstration of the proposed electrical annealing method on a high temperature (nanocrystalline platinum) material. (left) Before annealing and (right) after annealing.
|
[1] | Yue Zhao, Kai Wang, Shuang Yuan, Yonghui Ma, Guojian Li, Qiang Wang. The accelerating nanoscale Kirkendall effect in Co films-native oxide Si (100) system induced by high magnetic fields [J]. J. Mater. Sci. Technol., 2020, 46(0): 127-135. |
[2] | Enkang Hao, Yulong An, Xia Liu, Yijing Wang, Huidi Zhou, Fengyuan Yan. Effect of annealing treatment on microstructures, mechanical properties and cavitation erosion performance of high velocity oxy-fuel sprayed NiCoCrAlYTa coating [J]. J. Mater. Sci. Technol., 2020, 53(0): 19-31. |
[3] | Chunni Jia, Chengwu Zheng, Dianzhong Li. Cellular automaton modeling of austenite formation from ferrite plus pearlite microstructures during intercritical annealing of a C-Mn steel [J]. J. Mater. Sci. Technol., 2020, 47(0): 1-9. |
[4] | Jinkui Fan, Qiang Zheng, Rui Bao, Jianhong Yi, Juan Du. High performance Sm-Co powders obtained by crystallization from ball milled amorphous state [J]. J. Mater. Sci. Technol., 2020, 37(0): 181-184. |
[5] | Hongyu Wu, Dong Zhang, Biaobiao Yang, Chao Chen, Yunping Li, Kechao Zhou, Liang Jiang, Ruiping Liu. Microstructural evolution and defect formation in a powder metallurgy nickel-based superalloy processed by selective laser melting [J]. J. Mater. Sci. Technol., 2020, 36(0): 7-17. |
[6] | Xiaoming Qian, Nick Parson, X.-Grant Chen. Effects of Mn content on recrystallization resistance of AA6082 aluminum alloys during post-deformation annealing [J]. J. Mater. Sci. Technol., 2020, 52(0): 189-197. |
[7] | Luhan Hao, Xiang Ji, Guangqian Zhang, Wei Zhao, Mingyue Sun, Yan Peng. Carbide precipitation behavior and mechanical properties of micro-alloyed medium Mn steel [J]. J. Mater. Sci. Technol., 2020, 47(0): 122-130. |
[8] | Majid Jafari, Chan-Woo Bang, Jong-Chan Han, Kyeong-Min Kim, Seon-Hyeong Na, Chan-Gyung Park, Byeong-Joo Lee. Evolution of microstructure and tensile properties of cold-drawn hyper-eutectoid steel wires during post-deformation annealing [J]. J. Mater. Sci. Technol., 2020, 41(0): 1-11. |
[9] | Ming-Song Chen, Zong-Huai Zou, Y.C. Lin, Hong-Bin Li, Guan-Qiang Wang. Formation mechanism of large grains inside annealed microstructure of GH4169 superalloy by cellular automation method [J]. J. Mater. Sci. Technol., 2019, 35(7): 1403-1411. |
[10] | Qian Zhao, Zongqing Ma, Liming Yu, Huijun Li, Chenxi Liu, Chong Li, Yongchang Liu. Tailoring the secondary phases and mechanical properties of ODS steel by heat treatment [J]. J. Mater. Sci. Technol., 2019, 35(6): 1064-1073. |
[11] | Shuang Liang, Gang He, Die Wang, Fen Qiao. Atomic-layer-deposited (ALD) Al2O3 passivation dependent interface chemistry, band alignment and electrical properties of HfYO/Si gate stacks [J]. J. Mater. Sci. Technol., 2019, 35(5): 769-776. |
[12] | Kun Yang, Jian Wang, Liang Jia, Guangyu Yang, Huiping Tang, Yuanyuan Li. Additive manufacturing of Ti-6Al-4V lattice structures with high structural integrity under large compressive deformation [J]. J. Mater. Sci. Technol., 2019, 35(2): 303-308. |
[13] | Cong Peng, Yang Liu, Hui Liu, Shuyuan Zhang, Chunguang Bai, Yizao Wan, Ling Ren, Ke Yang. Optimization of annealing treatment and comprehensive properties of Cu-containing Ti6Al4V-xCu alloys [J]. J. Mater. Sci. Technol., 2019, 35(10): 2121-2131. |
[14] | Shuan Li, Yanqing Wu, Guoling Li, Hongen Yu, Kai Fu, Yong Wu, Jie Zhang, Wenhuai Tian, Xingguo Li. Ta-doped modified Gd2O3 film for a novel high k gate dielectric [J]. J. Mater. Sci. Technol., 2019, 35(10): 2305-2311. |
[15] | Aleksandr V. Korchuganov, Aleksandr N. Tyumentsev, Konstantin P. Zolnikov, Igor Yu. Litovchenko, Dmitrij S. Kryzhevich, Elazar Gutmanas, Shouxin Li, Zhongguang Wang, Sergey G. Psakhie. Nucleation of dislocations and twins in fcc nanocrystals: Dynamics of structural transformations [J]. J. Mater. Sci. Technol., 2019, 35(1): 201-206. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||