J. Mater. Sci. Technol. ›› 2022, Vol. 131: 60-67.DOI: 10.1016/j.jmst.2022.05.024
• Research Article • Previous Articles Next Articles
Peng Zhanga, Jinhao Xieb, Fan Yangb, Xin Shib,*(), Yanxia Yub, Xihong Lub,c,*(
)
Received:
2022-04-05
Revised:
2022-05-05
Accepted:
2022-05-15
Published:
2022-06-08
Online:
2022-06-08
Contact:
Xin Shi,Xihong Lu
About author:
luxh6@mail.sysu.edu.cn (X. Lu)Peng Zhang, Jinhao Xie, Fan Yang, Xin Shi, Yanxia Yu, Xihong Lu. Promoting ion adsorption and desolvation kinetics enables high capacity and rate capability of stibium anode for advanced alkaline battery[J]. J. Mater. Sci. Technol., 2022, 131: 60-67.
Fig. 2. (a) TEM images of NCCs (inset is SEM images of NCCs). (b) N 1 s and (c) O 1 s XPS spectra of CCs and NCCs. Voltage profiles of CCs and NCCs at 10 mA cm?2 under a fixed capacity of (d) 1 mAh cm?2 and (e) 2 mAh cm?2. (f) Capacity comparisons between Sb/NCCs and recently reported anodes for AABs. (g) CE of the Sb plating/stripping process on CCs and NCCs electrode at 1 mAh cm?2 and 2 mAh cm?2 with a fixed current density of 10 mA cm?2. (h) Voltage gap of CCs and NCCS electrodes at different current densities with the capacity limited to 1 mAh cm?2.
Fig. 3. SEM images of Sb deposition with a capacity of 0.5, 2, and 5 mAh cm?2 at a current density of 10 mA cm?2 on CCs (a-c) and NCCs (e-g). Cross-sectional SEM images of Sb deposition on a bare CCs electrode (d) and an NCCs electrode (h) at 10 mA cm?2 to an areal capacity of 2 mA h cm?2. (i) Particle size distribution on NCCs electrode at 0.5 mAh?cm?2. (j) Voltage-time curves during Sb nucleation at 10 mA cm?2 on CCs and NCCs electrodes. (k) Schematic diagram illustrating the ion/electron transport in metal stripping.
Fig. 4. (a) Binding energies of [Sb(OH)4]? with different types of oxygen functional groups on CCs and NCCs by density functional theory (DFT) calculations. 3D charge difference between (b) CCs and (c) NCCs electrode and [Sb(OH)4]? with C-OH as adsorption sites. (d) Sb3+ ion contents in 5% v/v HNO3 solution after [Sb(OH)4]? adsorption experiment. (e) Binding energies between bare C, different types of nitrogen doped C and Sb. Schematic illustration of [Sb(OH)4]? desolvation and subsequent deposition in (f) CCs and (g) NCCs electrode. Arrhenius behavior of the resistance corresponding to (h) [Sb(OH)4]? desolvation and (i) Sb3+ plating.
Fig. 5. (a) CV curves of the Ni3Se2 cathode and Sb/FCS anode measured at 10 mV s?1. (b) GCD curves of Ni3Se2//Sb/NCCs battery at different current densities. (c) Areal capacities and (d) cycling performance of Ni3Se2//Sb/CCs and Ni3Se2//Sb/NCCs batteries. (e) Ragone plots of Ni3Se2//Sb/NCCs battery in comparison with advanced AABs.
[1] | M. Huang, M. Li, C. Niu, Q. Li, L. Mai, Adv. Funct. Mater. 29 (2019) 1807847. |
[2] |
C. Jiao, Z. Wang, X. Zhao, H. Wang, J. Wang, R. Yu, D. Wang, Angew. Chem. Int. Ed. 58 (2019) 996.
DOI URL |
[3] | Y. Tang, X. Li, H. Lv, D. Xie, W. Wang, C. Zhi, H. Li, Adv. Energy Mater. 10 (2020) 20 0 0892. |
[4] |
X. Zang, L. Li, Meng J, L. Liu, Y. Pan, Q. Shao, N. Cao, J. Mater. Sci. Technol. 74 (2021) 52.
DOI URL |
[5] | Y. Zeng, X. Zhang, Y. Meng, M. Yu, J. Yi, Y. Wu, X. Lu, Y. Tong, Adv. Mater. 29 (2017) 1700274. |
[6] |
Q. Chen, J. Li, C. Liao, G. Hu, Y. Fu, O.K. Asare, S. Shi, Z. Liu, L. Zhou, L. Mai, J. Mater. Chem. A 6 (2018) 19488.
DOI URL |
[7] |
J. Zhou, Q. Yang, Q. Xie, H. Ou, X. Lin, A. Zeb, L. Hu, Y. Wu, G. Ma, J. Mater. Sci. Technol. 96 (2022) 262.
DOI URL |
[8] | T. Chen, Y. Bai, X. Xiao, H. Pang, Chem. Eng. J. 413 (2021) 127523. |
[9] | H. Chen, Z. Shen, Z. Pan, Z. Kou, X. Liu, H. Zhang, Q. Gu, C. Guan, J. Wang, Adv. Sci. 6 (2019) 1802002. |
[10] |
J. Wu, X. Huang, X. Xia, J. Energy Chem. 35 (2019) 132.
DOI URL |
[11] |
Y. Zhu, J. Li, X. Yun, G. Zhao, P. Ge, G. Zou, Y. Liu, H. Hou, X. Ji, Nano-Micro Lett. 12 (2020) 16.
DOI URL |
[12] |
W. Zhou, J. He, D. Zhu, J. Li, Y. Chen, A.C.S. Appl, Appl. ACS Mater. Interfaces 12 (2020) 34931.
DOI URL |
[13] | A. Naveed, T. Rasheed, B. Raza, J. Chen, J. Yang, N. Yanna, J. Wang, Energy Stor-age Mater. 44 (2022) 206. |
[14] |
M. García-Plaza, D. Serrano-Jiménez, J. Eloy-GarcíaCarrasco, J. Alonso-Martínez, J. Power Sources 275 (2015) 595.
DOI URL |
[15] |
Y. Zeng, M. Wang, W. He, P. Fang, M. Wu, Y. Tong, M. Chen, X. Lu, Chem. Sci. 10 (2019) 3602.
DOI URL |
[16] | Y. Zeng, Z. Lin, Z. Wang, M. Wu, Y. Tong, X. Lu, Adv. Mater. 30 (2018) e1707290. |
[17] |
H. Wang, Y. Liang, M. Gong, Y. Li, W. Chang, T. Mefford, J. Zhou, J. Wang, T. Regier, F. Wei, H. Dai, Nat. Commun. 3 (2012) 917.
DOI URL |
[18] | C. Guan, W. Zhao, Y. Hu, Q. Ke, X. Li, H. Zhang, J. Wang, Adv. Energy Mater. 6 (2016) 1601034. |
[19] |
B. Cui, Y. Gao, X. Han, W. H, J. Mater. Sci. Technol. 117 (2021) 72.
DOI URL |
[20] |
L. Ma, M.A. Schroeder, O. Borodin, T.P. Pollard, M.S. Ding, C. Wang, K. Xu, Nat. Energy 5 (2020) 743.
DOI URL |
[21] | M. Zhou, S. Guo, J. Li, X. Luo, Z. Liu, T. Zhang, X. Cao, M. Long, B. Lu, A. Pan, G. Fang, J. Zhou, S. Liang, Adv. Mater. 33 (2021) e2100187. |
[22] |
J. Wu, C. Yuan, T. Li, Z. Yuan, H. Zhang, X. Li, J. Am. Chem. Soc. 143 (2021) 13135.
DOI URL |
[23] | J. Hu, W. Ren, X. Chen, Y. Li, W. Huang, K. Yang, L. Yang, Y. Lin, J. Zheng, F. Pan, Nano Energy 74 (2020) 104864. |
[24] | H. Gao, X. Guo, S. Wang, F. Zhang, H. Liu, G. Wang, EcoMat 2 (2020) e12027. |
[25] |
N. Ulrich, Anal. Chim. Acta 359 (1998) 245.
DOI URL |
[26] |
L.L. Wikstrom, K. Nobe, J. Appl. Electrochem. 14 (1984) 257.
DOI URL |
[27] |
H. Zhang, Q. Liu, D. Zheng, F. Yang, X. Liu, X. Lu, Nat. Commun. 12 (2021) 14.
DOI URL |
[28] |
G. Wang, H. Wang, X. Lu, Y. Ling, M. Yu, T. Zhai, Y. Tong, Y. Li, Adv. Mater. 26 (2014) 2676.
DOI URL |
[29] | M. Yu, Z. Wang, H. Zhang, P. Zhang, T. Zhang, X. Lu, X. Feng, Nano Energy 64 (2019) 103987. |
[30] |
J. Liu, M. Chen, L. Zhang, J. Jiang, J. Yan, Y. Huang, J. Lin, H.J. Fan, Z.X. Shen, Nano Lett. 14 (2014) 7180.
DOI URL |
[31] |
J. Li, H. Zhao, J. Wang, N. Li, M. Wu, Q. Zhang, Y. Du, Nano Energy 62 (2019) 876.
DOI URL |
[32] |
P. Gao, Y. Wang, Q. Zhang, Y. Chen, D. Bao, L. Wang, Y. Sun, G. Li, M. Zhang, J. Mater. Chem. 22 (2012) 13922-13924.
DOI URL |
[33] |
X.P. Gao, S.M. Yao, T.Y. Yan, Z. Zhou, Energy Environ. Sci. 2 (2009) 502-505.
DOI URL |
[34] |
Y.L. Liu, M.Q. Li, G.G. Wang, L.Y. Dang, F. Li, M.E. Pam, H.Y. Zhang, J.C. Han, H.Y. Yang, Energy Environ. Mater. 4 (2020) 465.
DOI URL |
[35] |
J. Liu, C. Guan, C. Zhou, Z. Fan, Q. Ke, G. Zhang, C. Liu, J. Wang, Adv. Mater. 28 (2016) 8732.
DOI URL |
[36] |
E. Shangguan, Q. Wang, C. Wu, S. Wu, M. Ji, J. Li, Z. Chang, Q. Li, A.C.S. Sustain, Sustain ACS Chem. Eng. 6 (2018) 13312.
DOI URL |
[37] |
C. Wang, G. Zhu, P. Liu, Q. Chen, ACS Nano 14 (2020) 2404.
DOI URL |
[38] |
X. Yun, J. Li, X. Chen, H. Chen, L. Xiao, K. Xiang, W. Chen, H. Liao, Y. Zhu, ACS Appl. Mater. Interfaces 11 (2019) 36970.
DOI URL |
[39] | S. Li, J. Fu, G. Miao, S. Wang, W. Zhao, Z. Wu, Y. Zhang, X. Yang, Adv. Mater. 33 (2021) e2008424. |
[40] | J. Ding, T. Fan, K. Shen, Y. Li, Appl. Catal. B-Enviton. 292 (2021) 120174. |
[41] |
J. Zheng, D.C. Bock, T. Tang, Q. Zhao, J. Yin, K.R. Tallman, G. Wheeler, X. Liu, Y. Deng, S. Jin, A.C. Marschilok, E.S. Takeuchi, K.J. Takeuchi, L.A. Archer, Nat. Energy 6 (2021) 398.
DOI URL |
[42] | H. Zhang, Q. Liu, Y. Fang, C. Teng, X. Liu, P. Fang, Y. Tong, X. Lu, Adv. Mater. 31 (2019) e1904948. |
[43] |
Y.X. Yao, X. Chen, C. Yan, X.Q. Zhang, W.L. Cai, J.Q. Huang, Q. Zhang, Angew. Chem. Int. Ed. 60 (2021) 4090.
DOI URL |
[44] |
X. Shi, H. Wang, P. Kannan, J. Ding, S. Ji, F. Liu, H. Gai, R. Wang, J. Mater. Chem. A 7 (2019) 3344.
DOI URL |
[45] |
Y. Zeng, Z. Lin, Y. Meng, Y. Wang, M. Yu, X. Lu, Y. Tong, Adv. Mater. 28 (2016) 9188.
DOI URL |
[46] |
Y. Huang, W.S. Ip, Y.Y. Lau, J. Sun, J. Zeng, N.S.S. Yeung, W.S. Ng, H. Li, Z. Pei, Q. Xue, Y. Wang, J. Yu, H. Hu, C. Zhi, ACS Nano 11 (2017) 8953.
DOI PMID |
[47] |
X. Cheng, L. Zhou, Y. Lu, W. Xu, P. Zhang, X. Lu, Electrochim. Acta 263 (2018) 311.
DOI URL |
[48] |
L. Meng, D. Lin, J. Wang, Y. Zeng, Y. Liu, X. Lu, A.C.S. Appl, Appl. ACS Mater. Interfaces 11 (2019) 14854.
DOI URL |
[1] | Chenxi Wang, Zirui Jia, Shuangqiao He, Jixi Zhou, Shuo Zhang, Mengli Tian, Bingbing Wang, Guanglei Wu. Metal-organic framework-derived CoSn/NC nanocubes as absorbers for electromagnetic wave attenuation [J]. J. Mater. Sci. Technol., 2022, 108(0): 236-243. |
[2] | Jinbo Cheng, Bowen Liu, Yanqin Wang, Haibo Zhao, Yuzhong Wang. Growing CoNi nanoalloy@N-doped carbon nanotubes on MXene sheets for excellent microwave absorption [J]. J. Mater. Sci. Technol., 2022, 130(0): 157-165. |
[3] | Yidu Wang, Jingnan Ding, Jun Zhao, Jiajun Wang, Xiaopeng Han, Yida Deng, Wenbin Hu. Selective electrocatalytic reduction of CO2 to formate via carbon-shell-encapsulated In2O3 nanoparticles/graphene nanohybrids [J]. J. Mater. Sci. Technol., 2022, 121(0): 220-226. |
[4] | Jiashen Meng, Ziang Liu, Xiong Liu, Wei Yang, Lianzhou Wang, Yan Li, Yuan-Cheng Cao, Xingcai Zhang, Liqiang Mai. Scalable fabrication and active site identification of MOF shell-derived nitrogen-doped carbon hollow frameworks for oxygen reduction [J]. J. Mater. Sci. Technol., 2021, 66(0): 186-192. |
[5] | Na Li, Fei Chen, Xiangtao Chen, Zhongxu Chen, Yang Qi, Xiaodong Li, Xudong Sun. A bipolar modified separator using TiO2 nanosheets anchored on N-doped carbon scaffold for high-performance Li-S batteries [J]. J. Mater. Sci. Technol., 2020, 55(0): 152-158. |
[6] | Liang Chen, Zhi Li, Gangyong Li, Minjie Zhou, Binhong He, Jie Ouyang, Wenyuan Xu, Wei Wang, Zhaohui Hou. A facile self-catalyzed CVD method to synthesize Fe3C/N-doped carbon nanofibers as lithium storage anode with improved rate capability and cyclability [J]. J. Mater. Sci. Technol., 2020, 44(0): 229-236. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||