J. Mater. Sci. Technol. ›› 2022, Vol. 131: 115-121.DOI: 10.1016/j.jmst.2022.05.028
• Review Article • Previous Articles Next Articles
K. Gaoa, X.G. Zhua, L. Chena, W.H. Lia, X. Xua, B.T. Pana, W.R. Lib, W.H. Zhouc, L. Lic, W. Huangc, Y. Lic,*(
)
Received:2022-03-09
Revised:2022-04-18
Accepted:2022-05-08
Published:2022-06-09
Online:2022-06-09
Contact:
Y. Li
About author:*E-mail address: liyi@imr.ac.cn (Y. Li)K. Gao, X.G. Zhu, L. Chen, W.H. Li, X. Xu, B.T. Pan, W.R. Li, W.H. Zhou, L. Li, W. Huang, Y. Li. Recent development in the application of bulk metallic glasses[J]. J. Mater. Sci. Technol., 2022, 131: 115-121.
| Technologies | Computer numerical control machining (CNC) | Metal injection molding (MIM) | Die casting molding of BMGs |
|---|---|---|---|
| Characteristics | Low consistency in the product shape caused by the cutting and wastage Time-consuming | Low dimension precision Reprocessing is necessary Uneven dimension caused by different cooling rate in different parts of the product Uneven microstructure and texture of the product | High dimension precision (An order magnitude higher than that of MIM) High consistency of the product Uniform microstructure and texture of the product Mirror-smooth surfaces One-step forming without any reprocessing process |
| Cost | High | Low around a half of that of CNC | Low and comparable to that of MIM |
Table 1. Summary of the characteristics and cost comparison of several production and processing techniques.
| Technologies | Computer numerical control machining (CNC) | Metal injection molding (MIM) | Die casting molding of BMGs |
|---|---|---|---|
| Characteristics | Low consistency in the product shape caused by the cutting and wastage Time-consuming | Low dimension precision Reprocessing is necessary Uneven dimension caused by different cooling rate in different parts of the product Uneven microstructure and texture of the product | High dimension precision (An order magnitude higher than that of MIM) High consistency of the product Uniform microstructure and texture of the product Mirror-smooth surfaces One-step forming without any reprocessing process |
| Cost | High | Low around a half of that of CNC | Low and comparable to that of MIM |
| Alloys | Alloy | GFA | Remarks |
|---|---|---|---|
| Beryllium (Be) containing alloys | Vit 1 | The best glass forming ability alloys | Most easy processing alloys, with potential health issue. |
| Crystal Bar Zr | Vit 105 and 106, 601 | Excellent glass forming ability | Expensive, and Limited supply. |
| Sponge Zr + Y | Yihao alloy | Excellent glass forming ability and processing ability | Due to the existence of Y2O3, most suitable for interior products. |
| Sponge Zr | IMR alloy | Good glass forming ability | Much cheaper. Good surface finishing Good processing ability Suitable for exterior product. |
Table 2. Summary of typical Zr based bulk metallic glasses.
| Alloys | Alloy | GFA | Remarks |
|---|---|---|---|
| Beryllium (Be) containing alloys | Vit 1 | The best glass forming ability alloys | Most easy processing alloys, with potential health issue. |
| Crystal Bar Zr | Vit 105 and 106, 601 | Excellent glass forming ability | Expensive, and Limited supply. |
| Sponge Zr + Y | Yihao alloy | Excellent glass forming ability and processing ability | Due to the existence of Y2O3, most suitable for interior products. |
| Sponge Zr | IMR alloy | Good glass forming ability | Much cheaper. Good surface finishing Good processing ability Suitable for exterior product. |
| Alloy designated | Composition (at.%) | Remark | Refs. |
|---|---|---|---|
| Vit 1 | Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 | Golf club heads Tennis racket | [ |
| Vit 105 | Zr52.5Cu17.9Ni14.6Al10Ti5 | Musical instrument Medical applications | [ |
| Zr-55 | Zr55Al10Ni5Cu30 | Pressure sensor Golf club heads | [ |
| 106 | Zr57Cu15.4Ni12.6Al10Nb5 | - | [ |
| 106C | Zr57.2Cu15.56Ni12.71Al10.34Nb3.76Re0.43 | Guitar Pins Ear phone Latch cover Phone hinge | [ |
| 8 | Zr50.75(Cu90Ni10)40.25Al9 | - | [ |
Table 3. Summary of Zr-based alloys used for commercial applications.
| Alloy designated | Composition (at.%) | Remark | Refs. |
|---|---|---|---|
| Vit 1 | Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 | Golf club heads Tennis racket | [ |
| Vit 105 | Zr52.5Cu17.9Ni14.6Al10Ti5 | Musical instrument Medical applications | [ |
| Zr-55 | Zr55Al10Ni5Cu30 | Pressure sensor Golf club heads | [ |
| 106 | Zr57Cu15.4Ni12.6Al10Nb5 | - | [ |
| 106C | Zr57.2Cu15.56Ni12.71Al10.34Nb3.76Re0.43 | Guitar Pins Ear phone Latch cover Phone hinge | [ |
| 8 | Zr50.75(Cu90Ni10)40.25Al9 | - | [ |
Fig. 2. High end Sony ear phone made of bulk metallic glass launched in 2018. (a, b) The bulk metallic glass components. (c) A full view of ear phone.
Fig. 3. Examples of face ID support made by bulk metallic glass in several phones. Face ID support before (a) and after (c) installing the camera in OPPO Find X launched in 2018; Face ID support before (b) and after (d) installing the camera in HUAWEI Mate 20 Pro launched in 2018.
Fig. 5. Phone hinge made of bulk metallic glass of folding screen mobile phone launched by Huawei in 2020. (a) The obtained phone hinge by die casting modeling. (b) The phone hinge after physical vapor deposition (PVD) treatment. (c) Inner observation of the folding screen mobile phone. (d) Sideview of the folding screen mobile phone.
| [1] |
W.L. Johnson, MRS Bull. 24 (2013) 42-56.
DOI URL |
| [2] |
C.A. Schuh, T.C. Hufnagel, U. Ramamurty, Acta Mater. 55 (2007) 4067-4109.
DOI URL |
| [3] |
W.H. Wang, Prog. Mater. Sci. 57 (2012) 487-656.
DOI URL |
| [4] | J. Schroers, Phys. Today 66 (2013) 32-37. |
| [5] |
H.X. Li, Z.C. Lu, S.L. Wang, Y. Wu, Z.P. Lu, Prog. Mater. Sci. 103 (2019) 235-318.
DOI |
| [6] |
J. Wang, R. Li, N. Hua, T. Zhang, J. Mater. Res. 26 (2011) 2072-2079.
DOI URL |
| [7] |
A. Inoue, B.L. Shen, C.T. Chang, Acta Mater. 52 (2004) 4093-4099.
DOI URL |
| [8] |
T.S. Byun, N. Hashimoto, K. Farrell, Acta Mater. 52 (2004) 3889-3899.
DOI URL |
| [9] |
M. Calcagnotto, Y. Adachi, D. Ponge, D. Raabe, Acta Mater. 59 (2011) 658-670.
DOI URL |
| [10] |
M.D. Demetriou, M.E. Launey, G. Garrett, J.P. Schramm, D.C. Hofmann, W.L. Johnson, R.O. Ritchie, Nat. Mater. 10 (2011) 123-128.
DOI PMID |
| [11] | M. Telford, Mater. Today 7 (2004) 36-43. |
| [12] |
J. Schroers, Adv. Mater. 22 (2010) 1566-1597.
DOI URL |
| [13] |
A. Inoue, A. Takeuchi, Acta Mater. 59 (2011) 2243-2267.
DOI URL |
| [14] |
Inoue, Acta Mater. 48 (2000) 279-306.
DOI URL |
| [15] |
A.J. Drehman, A.L. Greer, D. Turnbull, Appl. Phys. Lett. 41 (1982) 716-717.
DOI URL |
| [16] |
H.W. Kui, A.L. Greer, D. Turnbull, Appl. Phys. Lett. 45 (1984) 615-616.
DOI URL |
| [17] | A. Inoue, T. Zhang, N. Nishiyama, K. Ohba, T. Masumoto, Mater. Tran. JIM 34 (1993) 1234-1237. |
| [18] |
Peker, W.L. Johnson, Appl. Phys. Lett. 63 (1993) 2342-2344.
DOI URL |
| [19] |
H. Tan, Y. Zhang, D. Ma, Y.P. Feng, Y. Li, Acta Mater. 51 (2003) 4551-4561.
DOI URL |
| [20] |
E.S. Park, D.H. Kim, J. Mater. Res. 20 (2005) 1465-1469.
DOI URL |
| [21] | H. Ma, L.L. Shi, J. Xu, Y. Li, E. Ma, Appl. Phys. Lett. 87 (2005) 181915. |
| [22] | Z.P. Lu, C.T. Liu, J.R. Thompson, W.D. Porter, Phys. Rev. Lett. 92 (2004) 245503. |
| [23] | J. Shen, Q.J. Chen, J.F. Sun, H.B. Fan, G. Wang, Appl. Phys. Lett. 86 (2005) 151907. |
| [24] |
H.W. Kui, A.L. Greer, D. Turnbull, Appl. Phys. Lett. 45 (1984) 615-616.
DOI URL |
| [25] |
A. Inoue, N. Nishiyama, H. Kimura, Mater. Trans. JIM 38 (1997) 179-183.
DOI URL |
| [26] |
J. Schroers, W.L. Johnson, Appl. Phys. Lett. 84 (2004) 3666-3668.
DOI URL |
| [27] | X.K. Xi, D.Q. Zhao, M.X. Pan, W.H. Wang, Y. Wu, J.J. Lewandowski, Phys. Rev. Lett. 94 (2005) 125510. |
| [28] |
J. Pan, Y.X. Wang, Y. Li, Acta Mater. 136 (2017) 126-133.
DOI URL |
| [29] |
D. Wang, H. Tan, Y. Li, Acta Mater. 53 (2005) 2969-2979.
DOI URL |
| [30] | J. Das, M.B. Tang, K.B. Kim, R. Theissmann, F. Baier, W.H. Wang, J. Eckert, Phys. Rev. Lett. 94 (2005) 205501. |
| [31] |
Y.H. Liu, G. Wang, R.J. Wang, D.Q. Zhao, M.X. Pan, W.H. Wang, Science 315 (2007) 1385.
DOI URL |
| [32] |
R.T. Qu, Z.Q. Liu, G. Wang, Z.F. Zhang, Acta Mater. 91 (2015) 19-33.
DOI URL |
| [33] |
J. Pan, Y.P. Ivanov, W.H. Zhou, Y. Li, A.L. Greer, Nature 578 (2020) 559-562.
DOI URL |
| [34] | EUTECTIX. 2022 Available from: https://eutectix.com/alloy-manufacturing/bulk-metallic-glass/. |
| [35] |
C.J. Gilbert, R.O. Ritchie, W.L. Johnson, Appl. Phys. Lett. 71 (1997) 476-478.
DOI URL |
| [36] |
C.P. Kim, J.Y. Suh, A. Wiest, M.L. Lind, R.D. Conner, W.L. Johnson, Scr. Mater. 60 (2009) 80-83.
DOI URL |
| [37] |
W. Chen, H. Zhou, Z. Liu, J. Ketkaew, L. Shao, N. Li, P. Gong, W. Samela, H. Gao, J. Schroers, Acta Mater. 145 (2018) 477-487.
DOI URL |
| [38] |
Gludovatz, S.E. Naleway, R.O. Ritchie, J.J. Kruzic, Acta Mater. 70 (2014) 198-207.
DOI URL |
| [39] |
Bernard , V. Keryvin, V. Doquet, S. Hin, Y. Yokoyama, Scr. Mater. 141 (2017) 58-61.
DOI URL |
| [40] | Li,, S. Scudino, B. Gludovatz, J.J. Kruzic, Mater. Sci. Eng. A 786 (2020) 139396. |
| [41] |
B.S. Li, S. Xie, J.J. Kruzic, Acta Mater. 176 (2019) 278-288.
DOI |
| [42] |
R.M.O. Mota, T.E. Graedel, E. Pekarskaya, J. Schroers, JOM 69 (2017) 2156-2163.
DOI URL |
| [43] |
Y. Nakai, M. Seki, Key Eng. Mater. 378-379 (2008) 317-328.
DOI URL |
| [44] |
R. Varadarajan, A.K. Thurston, J.J. Lewandowski, Metall. Mater. Trans. A 41 (2010) 149-158.
DOI URL |
| [45] |
Y. Yokoyama, H. Tokunaga, A.R. Yavari, T. Kawamata, T. Yamasaki, K. Fujita, K. Sugiyama, P.K. Liaw, A. Inoue, Metall. Mater. Trans. A 42 (2011) 1468-1475.
DOI URL |
| [46] |
G. Kumar, H.X. Tang, J. Schroers, Nature 457 (2009) 868-872.
DOI URL |
| [47] |
S. Pauly, L. Loeber, R. Petters, M. Stoica, S. Scudino, U. Kuehn, J. Eckert, Mater. Today 16 (2013) 37-41.
DOI URL |
| [48] | C. Zhang, D. Ouyang, S. Pauly, L. Liu, Mater. Sci. Eng. R 145 (2021) 100625. |
| [49] |
L. Liu, T. Zhang, Z. Liu, C. Yu, X. Dong, L. He, K. Gao, X. Zhu, W. Li, C. Wang, P. Li, L. Zhang, L. Li, Materials 11 (2018) 2338.
DOI URL |
| [50] | GREAT WALL SECURITIES. 2022 Available from: https://www.stdlibrary.com/p-2264396.html. |
| [51] |
Q.S. Zhang, W. Zhang, D.V. Louzguine-Luzgin, A. Inoue, Mater. Sci. Forum 654-656 (2010) 1042-1045 654-656.
DOI URL |
| [52] |
A. Inoue, T. Zhang, Mater. Trans. JIM 37 (1996) 185-187.
DOI URL |
| [53] |
X.H. Lin, W.L. Johnson, W.K. Rhim, Mater. Trans. JIM 38 (1997) 473-477.
DOI URL |
| [54] | X. Cui, X.F. Zhang, J.J. Li, F.Q. Zu, L.Z. Meng, J. Lu, F. Luo, Y.B. Ma, Intermetallics 121 (2020) 106773. |
| [55] |
E. Bakke, R. Busch, W.L. Johnson, Appl. Phys. Lett. 67 (1995) 3260-3262.
DOI URL |
| [56] |
F. Jiang, Z.J. Wang, Z.B. Zhang, J. Sun, Scr. Mater. 53 (2005) 4 87-4 91.
DOI URL |
| [57] |
Z.P. Lu, C.T. Liu, J. Mater. Sci. 39 (2004) 3965-3974.
DOI URL |
| [58] |
Y. Zhang, M.X. Pan, D.Q. Zhao, R.J. Wang, W.H. Wang, Mater. Trans. JIM 41 (2000) 1410-1414.
DOI URL |
| [59] |
Z.P. Lu, C.T. Liu, W.D. Porter, Appl. Phys. Lett. 83 (2003) 2581-2583.
DOI URL |
| [60] |
K. Pajor, T. Koziel, B. Rutkowski, G. Cios, P. Blyskun, D. Tyrala, P. Bala, A. Zielin-ska-Lipiec, Metall. Mater. Trans. 51 (2020) 4563-4571.
DOI URL |
| [61] |
J.J. Wall, C. Fan, P.K. Liaw, H. Choo, Mater. Sci. Eng. A 472 (2008) 125-129.
DOI URL |
| [62] |
Y.X. Wang, H. Yang, G. Lim, Y. Li, Scr. Mater. 62 (2010) 6 82-6 85.
DOI URL |
| [63] |
D. Cao, Y. Wu, H.X. Li, X.J. Liu, H. Wang, X.Z. Wang, Z.P. Lu, Intermetallics 99 (2018) 44-50.
DOI URL |
| [64] |
K. Pajor, T. Koziel, G. Cios, P. Blyskun, P. Bala, A. Zielinska-Lipiec, J. Non-Cryst. Solids 496 (2018) 42-47.
DOI URL |
| [65] |
Y. Wu, D. Cao, Y.L. Yao, G.S. Zhang, J.Y. Wang, L.Q. Liu, F.S. Li, H.Y. Fan, X.J. Liu, H. Wang, X.Z. Wang, H.H. Zhu, S.H. Jiang, P. Kontis, D. Raabe, B. Gault, Z.P. Lu, Nat. Commun. 12 (2021) 6582.
DOI URL |
| [66] | Lin X.H., Ph. D. thesis, California Institute of Technology, 1997. |
| [67] | Li Y, Lee I., Wang D., US Patent, No. 9290829, 2016. |
| [68] | J.J. Wall, C.T. Liu, W.K. Rhim, J.J.Z. Li, P.K. Liaw, H. Choo, W.L. Johnson, Appl. Phys. Lett. 92 (2008) 244106. |
| [69] | M. Baricco, S. Spriano, I. Chang, M.I. Petrzhik, L. Battezzati, Mater. Sci. Eng. A 304 (2001) 305-310. |
| [70] |
A. Gebert, J. Eckert, L. Schultz, Acta Mater. 46 (1998) 5475-5482.
DOI URL |
| [71] |
U. Kuehn, K. Eymann, N. Mattern, J. Eckert, A. Gebert, B. Bartusch, L. Schultz, Acta Mater. 54 (2006) 4685-4692.
DOI URL |
| [72] |
A.A. Kundig, M. Ohnuma, T. Ohkubo, K. Hono, Acta Mater. 53 (2005) 2091-2099.
DOI URL |
| [73] |
B.S. Murty, D.H. Ping, K. Hono, A. Inoue, Appl. Phys. Lett. 76 (2000) 55-57.
DOI URL |
| [74] |
B.S. Murty, D.H. Ping, K. Hono, A. Inoue, Acta Mater. 48 (2000) 3985-3996.
DOI URL |
| [75] | C. Chen, Y. Fan, W. Zhang, H. Zhang, R. Wei, S. Guan, T. Wang, T. Zhang, F. Li, J. Non-Cryst. Solids 553 (2021) 120474. |
| [76] |
R.D. Conner, R.E. Maire, W.L. Johnson, Mater. Sci. Eng. A 419 (2006) 148-152.
DOI URL |
| [77] |
Y.L. Du, H.W. Xu, G. Chen, Y. Deng, Intermetallics 30 (2012) 90-93.
DOI URL |
| [78] |
V. Keryvin, C. Bernard, J.C. Sangleboeuf, Y. Yokoyama, T. Rouxel, J. Non-Cryst. Solids 352 (2006) 2863-2868.
DOI URL |
| [79] |
A. Leonhard, L.Q. Xing, M. Heilmaier, A. Gebert, J. Eckert, L. Schultz, Nanostruct. Mater. 10 (1998) 805-817.
DOI URL |
| [80] |
C.T. Liu, M.F. Chisholm, M.K. Miller, Intermetallics 10 (2002) 1105-1112.
DOI URL |
| [81] | W.H. Zhou, Y.H. Meng, F.H. Duan, W. Huang, J.H. Yao, J. Pan, Y.X. Wang, Y. Li, Intermetallics 129 (2021) 107055. |
| [82] | Z.K. Li, X.D. Qin, D.M. Liu, H.Y. Lu, H.F. Zhang, Y.D. Li, W.R. Li, Rare Metal Mater. Eng. 47 (2018) 2755-2760. |
| [83] |
K. Zhou, Y. Liu, S.J. Pang, T. Zhang, J. Alloys Compd. 656 (2016) 389-394.
DOI URL |
| [84] |
J.H. Zhu, C.P. Wang, J.J. Han, S.Y. Yang, G.Q. Xie, H.X. Jiang, Y.C. Chen, X.J. Liu, Intermetallics 92 (2018) 55-61.
DOI URL |
| [85] | Z.P. Lu, H. Bei, Y. Wu, G.L. Chen, E.P. George, C.T. Liu, Appl. Phys. Lett. 92 (1) (2008) 011915. |
| [86] |
Z.H. Han, L. He, Y.L. Hou, J. Feng, J. Sun, Intermetallics 17 (2009) 553-561.
DOI URL |
| [87] | W.H. Zhou, F.H. Duan, Y.H. Meng, C.C. Zheng, H.M. Chen, A.G. Huang, Y.X. Wang, Y. Li, Acta Mater. 220 (2021) 117345. |
| [88] | Y. Li, Y.X. Wang, H.C. Cai, J.J. Qiu, CN107236913B, 2019. |
| [89] | W.L. Johnson, JOM 54 (2002) 40-43. |
| [90] | LIQUIDMETAL Technologies. 2022 Available from: https://liquidmetal.com/wp-content/uploads/2021/05/LQM_ASoundDecision.pdf. |
| [91] | LIQUIDMETAL Technologies. 2022 Available from: https://liquidmetal.com/wp-content/uploads/2021/05/LQM_TuningFork.pdf. |
| [92] |
A. Inoue, N. Nishiyama, MRS Bull. 32 (2007) 651-658.
DOI URL |
| [93] |
A. Inoue, Engineering 1 (2015) 185-191.
DOI URL |
| [94] | YIHAO METAL Technology, 2022 Available from: http://www.yihaometal.com/. |
| [95] | J.R. Alves, The History of the Guitar, Marshall University, 2015. |
| [96] | HUAWEI. 2022 Available from: https://consumer.huawei.com/cn/phones/mate-x2/. |
| [97] | VIVO. 2022 Available from: https://www.vivo.com.cn/vivo/xfold/. |
| [98] | ROYOLE. 2022 Available from: https://www.royole.com/flexpai. |
| [1] | Hae Jin Park, Hee Jin Lee, Tae Kyung Kim, Sung Hwan Hong, Wei-Min Wang, Taek Jib Choi, Ki Buem Kim. Formation of photo-reactive heterostructure from a multicomponent amorphous alloy with atomically random distribution [J]. J. Mater. Sci. Technol., 2022, 109(0): 245-253. |
| [2] | Wang Yi, Guangchen Liu, Zhao Lu, Jianbao Gao, Lijun Zhang. Efficient alloy design of Sr-modified A356 alloys driven by computational thermodynamics and machine learning [J]. J. Mater. Sci. Technol., 2022, 112(0): 277-290. |
| [3] | Dong Yuqiao, Song Guang-Ling, Zhang Jiawei, Gao Yahui, Ming Wang Zi, Zheng Dajiang. Biocorrosion induced by red-tide alga-bacterium symbiosis and the biofouling induced by dissolved iron for carbon steel in marine environment [J]. J. Mater. Sci. Technol., 2022, 128(0): 107-117. |
| [4] | Song Xu, Tang Zhonglan, Liu Wenbo, Chen Kuan, Liang Jie, Yuan Bo, Lin Hai, Zhu Xiangdong, Fan Yujiang, Shi Xinli, Zhao Peng, Yang Lei, Zhang Kai, G. Mikos Antonios, Zhang Xingdong. Biomaterials and regulatory science [J]. J. Mater. Sci. Technol., 2022, 128(0): 221-227. |
| [5] | Timothy Alexander Listyawan, Maya Putri Agustianingrum, Young Sang Na, Ka Ram Lim, Nokeun Park. Improving high-temperature oxidation behavior by modifying Al and Co content in Al-Co-Cr-Fe-Ni high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 129(0): 115-126. |
| [6] | Z. Li, W.T. Nash, S.P. O'Brien, Y. Qiu, R.K. Gupta, N. Birbilis. cardiGAN: A generative adversarial network model for design and discovery of multi principal element alloys [J]. J. Mater. Sci. Technol., 2022, 125(0): 81-96. |
| [7] | Yu Fu, Jun Li, Hong Luo, Cuiwei Du, Xiaogang Li. Recent advances on environmental corrosion behavior and mechanism of high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 80(0): 217-233. |
| [8] | Di Wu, Libin Liu, Lijun Zeng, Wenguang Zhu, Wanlin Wang, Xiaoyong Zhang, Junfeng Hou, Baoliang Liu, Jiafeng Lei, Kechao Zhou. Designing high-strength titanium alloy using pseudo-spinodal mechanism through diffusion multiple experiment and CALPHAD calculation [J]. J. Mater. Sci. Technol., 2021, 74(0): 78-88. |
| [9] | Yu Fu, Wenlong Xiao, Junshuai Wang, Lei Ren, Xinqing Zhao, Chaoli Ma. A novel strategy for developing α + β dual-phase titanium alloys with low Young’s modulus and high yield strength [J]. J. Mater. Sci. Technol., 2021, 76(0): 122-128. |
| [10] | Yonggang Fan, Junxiang Fan, Cong Wang. Detailing interfacial reaction layer products between cubic boron nitride and Cu-Sn-Ti active filler metal [J]. J. Mater. Sci. Technol., 2021, 68(0): 35-39. |
| [11] | Feng He, Bin Han, Zhongsheng Yang, Da Chen, Guma Yeli, Yang Tong, Daixiu Wei, Junjie Li, Zhijun Wang, Jincheng Wang, Ji-jung Kai. Elemental partitioning as a route to design precipitation-hardened high entropy alloys [J]. J. Mater. Sci. Technol., 2021, 72(0): 52-60. |
| [12] | Xin Wei, Junhua Dong, Nan Chen, Amar Prasad Yadav, Qiying Ren, Jie Wei, Changgang Wang, Rongyao Ma, Wei Ke. Effects of bentonite content on the corrosion evolution of low carbon steel in simulated geological disposal environment [J]. J. Mater. Sci. Technol., 2021, 66(0): 46-56. |
| [13] | Yuhui Zhang, Yuling Liu, Shuhong Liu, Hai-Lin Chen, Qing Chen, Shiyi Wen, Yong Du. Assessment of atomic mobilities and simulation of precipitation evolution in Mg-X (X=Al, Zn, Sn) alloys [J]. J. Mater. Sci. Technol., 2021, 62(0): 70-82. |
| [14] | Yanhui Li, Siwen Wang, Xuewei Wang, Meiling Yin, Wei Zhang. New FeNiCrMo(P, C, B) high-entropy bulk metallic glasses with unusual thermal stability and corrosion resistance [J]. J. Mater. Sci. Technol., 2020, 43(0): 32-39. |
| [15] | Lin Pang, Zhengbin Wang, Yugui Zheng, Xueming Lai, Xu Han. On the localised corrosion of carbon steel induced by the in-situ local damage of porous corrosion products [J]. J. Mater. Sci. Technol., 2020, 54(0): 95-104. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
