J. Mater. Sci. Technol. ›› 2022, Vol. 130: 227-248.DOI: 10.1016/j.jmst.2022.03.036
• Review Article • Previous Articles Next Articles
S.A. Beknalkara, A.M. Telib, T.S. Bhata,c, K.K. Pawara,c, S.S. Patila, N.S. Haraled, J.C. Shinb,*(), P.S. Patila,c,**(
)
Received:
2022-01-31
Revised:
2022-03-10
Accepted:
2022-03-14
Published:
2022-12-10
Online:
2022-12-07
Contact:
J.C. Shin,P.S. Patil
About author:
∗∗Corresponding author at: Thin Film Materials Laboratory, Department of Physics, Shivaji University, Kolhapur 416-009, India. E-mail addresses: psp_phy@unishivaji.ac.in (P.S. Patil)S.A. Beknalkar, A.M. Teli, T.S. Bhat, K.K. Pawar, S.S. Patil, N.S. Harale, J.C. Shin, P.S. Patil. Mn3O4 based materials for electrochemical supercapacitors: Basic principles, charge storage mechanism, progress, and perspectives[J]. J. Mater. Sci. Technol., 2022, 130: 227-248.
Fig. 1. Ragone plot showing the specific power vs specific energy of various energy storage devices Reproduced with permissions. American Chemical Society Copyright (2014) [6].
Fig. 3. Research papers based on Manganese oxide as supercapacitor (a) number of papers published on different phases of manganese oxide and (b) year-wise published number of research papers on Mn3O4.
Fig. 4. (a) Pourbaix diagram of manganese. Reproduced with permission. Copyright (2019), MDPI, Basel, Switzerland [27]. (b) Hausmannite cell unit with 28 atoms, Mn2+ tetrahedral and Mn3+ octahedral sites (c). Detailed structure of different Mn sites [32]. (d) Schematic view of the energy diagram of Mn and O for both phases in Mn3O4 if Mn 3d orbitals pointing toward the O atom are t2g and the rest are eg: (i) An extracted diagram for Mn 4s, Mn 4p, and O 2p, (ii) An extracted diagram for Mn 3d and O 2p. Reproduced with permission. Copyright 2015, The Physical Society of Japan [34]. (e) Model of the band formation of an oxide semiconductor. Reproduced with permission. Copyright 2015, The Royal Society of Chemistry[35]. Ex-situ high-resolution XAS spectra after (f) the 1st charge of the manganese oxide electrodes compared with the Mn standard compounds Reproduced with permission. Copyright 2017, The Royal Society of Chemistry [39]. (g) Band diagram and charge-switching alignment of an electrochemical supercapacitor electrode [40]. (h) SEM image of the Mn3O4 nanooctahedrons Reproduced with permission. Copyright 2010, The Royal Society of Chemistry [45].
Phases | Eμ | EA | C | νo(1013/s) | Μ (cm2/(V s)) | |
---|---|---|---|---|---|---|
Tetragonal | Melt-grown | 0.38 | 1.04 | 350 | 2.4 | 5.3 × 10−3 |
Sintered | 0.28 | 1.17 | 1200 | 1.4 | 8.1 × 10−3 | |
Cubic | 0.52 | 0.26 | 2 | 23 | 1.3 × 10−3 |
Table 1. Comparison of electrical parameters of tetragonal and cubic phase of Mn3O4.
Phases | Eμ | EA | C | νo(1013/s) | Μ (cm2/(V s)) | |
---|---|---|---|---|---|---|
Tetragonal | Melt-grown | 0.38 | 1.04 | 350 | 2.4 | 5.3 × 10−3 |
Sintered | 0.28 | 1.17 | 1200 | 1.4 | 8.1 × 10−3 | |
Cubic | 0.52 | 0.26 | 2 | 23 | 1.3 × 10−3 |
Mn3O4 nanostructures | |||||||
---|---|---|---|---|---|---|---|
Sr. No. | Morphology | Method of preparation | Electrolyte | Specific capacitance | Capacitive retention (%) | Cycles | Refs. |
1 | Nanoparticles | Hydrothermal | 1 M Li2SO4 | 198 F/g at 0.5 mA/cm2 | 70 | 1000 | [ |
2 | Porous nanostructures | hydrothermal | 1 M Na2SO4 | 232 F/g at 0.5 A/g | 78 | 5000 | [ |
3 | Porous nanospheres | Cathodic electrodeposition | 0.5 M Na2SO4 | 253 F/g at 10 mV/s | 90 | 1000 | [ |
4 | Flowers | e-beam evaporation | 1 M Na2SO4 | 568 F/g at 1 A/g | 93 | 5000 | [ |
5 | Pyramidal grains | e-beam evaporation | 1 M Na2SO4 | 754 F/g at 1 A/g | 89 | 4000 | [ |
6 | Nanograins | SILAR | 1 M Na2SO4 | 375 F/g at 5 mV/s | 94 | 4500 | [ |
7 | Stacked nanosheets | CBD | 1 M Na2SO4 | 398 F/g at 5 mV/s | 82 | 2000 | [ |
8 | Microspheres | Modified solvothermal | 1 M Na2SO4 | 302 F/g at 0.5 A/g | 89 | 5000 | [ |
9 | Nanoparticles | simple chemical precipitation | 1 M Na2SO4 | 322 F/g at 0.5 mA/cm2 | 77 | 1000 | [ |
10 | Nanoparticles | microwave assisted reflux method | 1 M Na2SO4 | 135 F/g at 2 mV/s | - | - | [ |
11 | Nanorods | cathodic electrodeposition | 1 M Na2SO4 | 321F/g at 2 mV/s | 91 | 1000 | [ |
12 | Nano-octahedrons | Hydrothermal synthesis | 1 M Na2SO4 | 322 F/g at 5 mV/s | - | - | [ |
13 | Porous plates | Cathodic electrodeposition | 1 M Na2SO4 | 341F/g at 2 mV/s | 6 | 1000 | [ |
14 | Porous cauliflowers | Hydrothermal treatment | 1 M Na2SO4 | 401 F/g at 10 mV/s | 91 | 1000 | [ |
Table 2. Comparison of electrochemical parameters of pristine Mn3O4.
Mn3O4 nanostructures | |||||||
---|---|---|---|---|---|---|---|
Sr. No. | Morphology | Method of preparation | Electrolyte | Specific capacitance | Capacitive retention (%) | Cycles | Refs. |
1 | Nanoparticles | Hydrothermal | 1 M Li2SO4 | 198 F/g at 0.5 mA/cm2 | 70 | 1000 | [ |
2 | Porous nanostructures | hydrothermal | 1 M Na2SO4 | 232 F/g at 0.5 A/g | 78 | 5000 | [ |
3 | Porous nanospheres | Cathodic electrodeposition | 0.5 M Na2SO4 | 253 F/g at 10 mV/s | 90 | 1000 | [ |
4 | Flowers | e-beam evaporation | 1 M Na2SO4 | 568 F/g at 1 A/g | 93 | 5000 | [ |
5 | Pyramidal grains | e-beam evaporation | 1 M Na2SO4 | 754 F/g at 1 A/g | 89 | 4000 | [ |
6 | Nanograins | SILAR | 1 M Na2SO4 | 375 F/g at 5 mV/s | 94 | 4500 | [ |
7 | Stacked nanosheets | CBD | 1 M Na2SO4 | 398 F/g at 5 mV/s | 82 | 2000 | [ |
8 | Microspheres | Modified solvothermal | 1 M Na2SO4 | 302 F/g at 0.5 A/g | 89 | 5000 | [ |
9 | Nanoparticles | simple chemical precipitation | 1 M Na2SO4 | 322 F/g at 0.5 mA/cm2 | 77 | 1000 | [ |
10 | Nanoparticles | microwave assisted reflux method | 1 M Na2SO4 | 135 F/g at 2 mV/s | - | - | [ |
11 | Nanorods | cathodic electrodeposition | 1 M Na2SO4 | 321F/g at 2 mV/s | 91 | 1000 | [ |
12 | Nano-octahedrons | Hydrothermal synthesis | 1 M Na2SO4 | 322 F/g at 5 mV/s | - | - | [ |
13 | Porous plates | Cathodic electrodeposition | 1 M Na2SO4 | 341F/g at 2 mV/s | 6 | 1000 | [ |
14 | Porous cauliflowers | Hydrothermal treatment | 1 M Na2SO4 | 401 F/g at 10 mV/s | 91 | 1000 | [ |
Fig. 5. Survey about different strategies developed by researchers to improve the performance of pristine Mn3O4. (*note- M-carbon- Mn3O4/carbon-based composite; M-oxide- Mn3O4/oxide-based composite; M-Polymer- Mn3O4/polymer hybrid composite; M-doping- Doping of metal atoms in Mn3O4; M-Mn3O4; CNT-carbon nanotube, G- graphene, rGO- reduced graphene oxide, CNF-carbon nanofibers, OCa- other carbon-based; BO- binary oxide, OH- Hydroxide, MS- Metal sulphides).
Fig. 6. (a) TEM images of Mn3O4/MWCNT Reproduced with permission. Copyright 2014, Korean Chemical Society [68]. (b) Cycling behavior of 25 MWCNT/Mn3O4 composite and Mn3O4 nanomaterial measured at 1 A/g current density. (c) A plot of energy density Vs power density for MWCNT/Mn3O4 composite and Mn3O4 nanomaterial. Reproduced with permission. Copyright 2015, The Royal Society of Chemistry [69]. (d) Schematic illustration and (i-iv) FE-SEM images of Mn3O4@CNT nano-clusters, and (i) EDX spectrum and (ii-iv) elemental mapping of Mn3O4@CNT nano-clusters. Reproduced with permission. Copyright (2018), The Royal Society of Chemistry and the Center National de la Recherche Scientifique [70]. (e) Schematic illustration of CNT-Fe3O4//CNT- Mn3O4 ASC device. (f) A single ASC powering a Red LED, while shows the tandem ASC device lighting a Blue LED and demonstrates three series-connected ASC devices employed for charging a Samsung mobile phone. Reproduced with permission. Copyright (2018), American Chemical Society [71]. (g, h) Porous graphene@Mn3O4. Reproduced with permission. Copyright (2018), American Chemical Society [72]. (i) Galvanostatic charge-discharge curves at a current density of 0.5 A/g. (j) Specific capacitance from capacitive charge and Faradaic charge and corresponding Faradaic capacitance ratio. (k) Variations of the peak intensity ratio of IC-O-Mn/IMn-O and Faradaic contribution ratio vs. rGO content (l). The power density vs. energy density curves of as-prepared M/rGO-2//AC asymmetric supercapacitor compared to the data for other devices (The inset illustrates the prepared M/rGO-2//AC asymmetric supercapacitor lighting the LED). Reproduced with permission. Copyright (2019), American Chemical Society [73].
Fig. 7. (a) TEM image of Mn3O4-GO, The inset is a magnified image of one double-shell hollow sphere. (b) CV curves of Mn3O4-GO double shells hollow spheres and the pure Mn3O4 nanoparticles at a scan rate of 50 mV/s. (c) The plot of the relationship between the specific capacitance and scan rate. Reproduced with permission. Copyright 2016, Elsevier Ltd. [79]. SEM images of Mn3O4 NWs grown on CF at (d) 20 μm (e) 200 nm magnification. (f) Capacitance retention at different bending angles of the supercapacitor [inset digital images of supercapacitor (i) bend at 180° (scale bar = 2 cm), (ii) twisted on a finger (scale bar = 2 cm), and (iii) weaved on a textile fabric glove (scale bar = 2 cm)) Reproduced with permission. Copyright (2019), American Chemical Society [82]. (g) Cyclic voltammetry (CV) curves at a scan rate of 80 mV/s. (h) Galvanostatic charge-discharge (GCD) curves at 0.5 A/g of Mn3O4/PCM and bare Mn3O4. (i) Nyquist plots of Mn3O4/PCM and bare Mn3O4. Reproduced with permission. Copyright (2018), MDPI, Basel, Switzerland [84].
Fig. 8. (a) SEM images of Mn3O4 TB/NHPC composite. (b) TEM images of Mn3O4 TB/NHPC composite Reproduced with permission. Copyright (2020), Elsevier B.V. [85]. (c) Illustration of the fabrication of ordered porous Mn3O4@N-doped carbon/graphene hybrids. (d) Galvanostatic charge-discharge curves of MCG-2 at different current densities from 1 to 20 A/g. (e) Nyquist plots for MCG-2 and Mn3O4. Inset shows the magnified view of the Warburg semicircles in the spectra. Reproduced with permission. Copyright 2016, Springer Nature [86]. (f) Schematic illustration of the fabrication processes for NPCM/Mn3O4. (g) SEM morphologies of the NPCM/ Mn3O4 sample. Reproduced with permission. Copyright (2019), Elsevier Ltd. [87].
Mn3O4-Carbon based nanocomposites | ||||||||
---|---|---|---|---|---|---|---|---|
Sr. No. | Material | Electrolyte | Specific capacitance | Capacitive retention (%) | Cycles | Energy density | Power density | Refs. |
1 | Mn3O4@MWCNT | 1 M Na2SO4 | 257 F/g at 5 mV/s | 85 | 1000 | - | - | [ |
2 | Mn3O4@MWCNT | 441 F/g at 2 mV/s | 98 | 1000 | 54.95 Wh/kg | 500 W/kg | [ | |
3 | Mn3O4@CNT | 1 M Na2SO4 | 81.9 F/g at 0.6 A/g | 87 | 1000 | - | - | [ |
4 | Mn3O4- CNT (cathode) Fe3O4- CNT (anode) | 1 M Na2SO4 | 135.2 F/g at 10 mV/s | 100 | 15,000 | 31.4 Wh/kg | 10.3 kW/kg | [ |
5 | Mn3O4@MWCNT | 0.5 M Na2SO4 | 2.8 F/cm2 at 2 mV/s | - | - | 29 Wh/kg | 159 W/kg | [ |
6 | Mn3O4- rGO | 1 M Na2SO4 | 228 F/g at 5 A/g | 95 | 500 | 82 Wh/kg | 7097 W/ kg | [ |
7 | Mn3O4-G | 1 M Na2SO4 | 270.6 F/g at 0.2 A/g | 91 | 1500 | - | - | [ |
8 | Mn3O4-G | 1 M Na2SO4 | 312 F/g at 0.5 mA/cm2 | 76 | 1000 | - | - | [ |
9 | Mn3O4-G | 1 M Na2SO4 | 271.5 F/g at 0.1 A/g | 100 | 20,000 | - | - | [ |
10 | Mn3O4-G | 6 M KOH | 256 F/g at 5 mV/s | - | - | - | [ | |
11 | Mn3O4- rGO | 1 M Na2SO4 | 351 F/g at 0.5 A/g | 80.1 | 10,000 | 36.76 Wh/kg | 0.5 kW/ kg | [ |
12 | Mn3O4-G | 1 M Na2SO4 | 22.5 F/g at 5 A/g | 100 | 1000 | - | - | [ |
13 | Mn3O4-G | 1 M Na2SO4 | 317 F/g at 10 mV/s | 100 | 4000 | - | - | [ |
14 | Mn3O4-G | 1 M Na2SO4 | 208 F/g at 0.5 A/g | 86 | 2000 | 30.1 Wh/kg | 9500 W/kg | [ |
15 | Mn3O4-G | - | 315 F/g at 0.5 A/g | 105 | 5000 | - | - | [ |
16 | Mn3O4-G | 1 M K2SO4 | 260 F/g at 50A/g | 92-94 | 1000 | 6.4 Wh/ kg | 0.4 kW/ kg | [ |
17 | Mn3O4- rGO | 6 M KOH | 409 F/g at 0.5 A/g, | 92 | 3000 | - | - | [ |
18 | Mn3O4- rGO | PVA/H3PO4 | 311 F/cm3 at 300 mA/ cm3 | 85 | 10,000 | 4.05 mWh/cm3 | 268 mW/ cm3 | [ |
19 | Mn3O4/CNT/G/ | ]−CH2−CH(CO2K)−]n./KCl | 220F/g at 10 A/g | 86 | 10,000 | 32.7 Wh/kg) | - | [ |
20 | Mn3O4-CNF | 1 M Na2SO4 | 300.7 F/g | 100 | 7500 | - | - | [ |
21 | Mn3O4-CNF | 1 M Na2SO4 | 313 F/g at 0.5 A/g | 94 | 5000 | 18 Wh/kg | - | [ |
22 | Mn3O4-CNF | 1 M Na2SO4 | 140.5 F/g at 0.25 A/g | 90.3 | 5000 | 27.13 Wh/Kg | 0.41 kW/Kg | [ |
23 | Mn3O4-PC | 1 M Na2SO4 | 366 F/g at 0.5 A/g | 97 | 10,000 | 34.7 Wh/Kg | 450 W/Kg | [ |
24 | Mn3O4/N-C/G/ | 1 M Na2SO4 | 456 F/g at 1 A/g | 98.1 | 2000 | - | - | [ |
25 | Mn3O4-C | 1 M Na2SO4 | 384 F/g at 0.5 A/g | 99 | 5000 | 16 Wh/Kg | 207 W/Kg | [ |
26 | Mn3O4-C | 1 M Na2SO4 | 522 F/g at 1 A/g | 100 | 1400 | 58.72 W h/kg | 451.6 W/kg | [ |
27 | Mn3O4-C | 5 M LiCl | 430 F/g at 1 mV/s | 93.15 | 10,000 | 13.5 Wh /kg | 0.3 kW/kg | [ |
28 | Mn3O4-G | 0.5 M Na2SO4 | 225 F/g at 5 mV/s | 99.5 | 6000 | 34.1 Wh/kg | 251 W/kg | [ |
Table 3. Comparison of electrochemical parameters of Mn3O4/carbon-based composite.
Mn3O4-Carbon based nanocomposites | ||||||||
---|---|---|---|---|---|---|---|---|
Sr. No. | Material | Electrolyte | Specific capacitance | Capacitive retention (%) | Cycles | Energy density | Power density | Refs. |
1 | Mn3O4@MWCNT | 1 M Na2SO4 | 257 F/g at 5 mV/s | 85 | 1000 | - | - | [ |
2 | Mn3O4@MWCNT | 441 F/g at 2 mV/s | 98 | 1000 | 54.95 Wh/kg | 500 W/kg | [ | |
3 | Mn3O4@CNT | 1 M Na2SO4 | 81.9 F/g at 0.6 A/g | 87 | 1000 | - | - | [ |
4 | Mn3O4- CNT (cathode) Fe3O4- CNT (anode) | 1 M Na2SO4 | 135.2 F/g at 10 mV/s | 100 | 15,000 | 31.4 Wh/kg | 10.3 kW/kg | [ |
5 | Mn3O4@MWCNT | 0.5 M Na2SO4 | 2.8 F/cm2 at 2 mV/s | - | - | 29 Wh/kg | 159 W/kg | [ |
6 | Mn3O4- rGO | 1 M Na2SO4 | 228 F/g at 5 A/g | 95 | 500 | 82 Wh/kg | 7097 W/ kg | [ |
7 | Mn3O4-G | 1 M Na2SO4 | 270.6 F/g at 0.2 A/g | 91 | 1500 | - | - | [ |
8 | Mn3O4-G | 1 M Na2SO4 | 312 F/g at 0.5 mA/cm2 | 76 | 1000 | - | - | [ |
9 | Mn3O4-G | 1 M Na2SO4 | 271.5 F/g at 0.1 A/g | 100 | 20,000 | - | - | [ |
10 | Mn3O4-G | 6 M KOH | 256 F/g at 5 mV/s | - | - | - | [ | |
11 | Mn3O4- rGO | 1 M Na2SO4 | 351 F/g at 0.5 A/g | 80.1 | 10,000 | 36.76 Wh/kg | 0.5 kW/ kg | [ |
12 | Mn3O4-G | 1 M Na2SO4 | 22.5 F/g at 5 A/g | 100 | 1000 | - | - | [ |
13 | Mn3O4-G | 1 M Na2SO4 | 317 F/g at 10 mV/s | 100 | 4000 | - | - | [ |
14 | Mn3O4-G | 1 M Na2SO4 | 208 F/g at 0.5 A/g | 86 | 2000 | 30.1 Wh/kg | 9500 W/kg | [ |
15 | Mn3O4-G | - | 315 F/g at 0.5 A/g | 105 | 5000 | - | - | [ |
16 | Mn3O4-G | 1 M K2SO4 | 260 F/g at 50A/g | 92-94 | 1000 | 6.4 Wh/ kg | 0.4 kW/ kg | [ |
17 | Mn3O4- rGO | 6 M KOH | 409 F/g at 0.5 A/g, | 92 | 3000 | - | - | [ |
18 | Mn3O4- rGO | PVA/H3PO4 | 311 F/cm3 at 300 mA/ cm3 | 85 | 10,000 | 4.05 mWh/cm3 | 268 mW/ cm3 | [ |
19 | Mn3O4/CNT/G/ | ]−CH2−CH(CO2K)−]n./KCl | 220F/g at 10 A/g | 86 | 10,000 | 32.7 Wh/kg) | - | [ |
20 | Mn3O4-CNF | 1 M Na2SO4 | 300.7 F/g | 100 | 7500 | - | - | [ |
21 | Mn3O4-CNF | 1 M Na2SO4 | 313 F/g at 0.5 A/g | 94 | 5000 | 18 Wh/kg | - | [ |
22 | Mn3O4-CNF | 1 M Na2SO4 | 140.5 F/g at 0.25 A/g | 90.3 | 5000 | 27.13 Wh/Kg | 0.41 kW/Kg | [ |
23 | Mn3O4-PC | 1 M Na2SO4 | 366 F/g at 0.5 A/g | 97 | 10,000 | 34.7 Wh/Kg | 450 W/Kg | [ |
24 | Mn3O4/N-C/G/ | 1 M Na2SO4 | 456 F/g at 1 A/g | 98.1 | 2000 | - | - | [ |
25 | Mn3O4-C | 1 M Na2SO4 | 384 F/g at 0.5 A/g | 99 | 5000 | 16 Wh/Kg | 207 W/Kg | [ |
26 | Mn3O4-C | 1 M Na2SO4 | 522 F/g at 1 A/g | 100 | 1400 | 58.72 W h/kg | 451.6 W/kg | [ |
27 | Mn3O4-C | 5 M LiCl | 430 F/g at 1 mV/s | 93.15 | 10,000 | 13.5 Wh /kg | 0.3 kW/kg | [ |
28 | Mn3O4-G | 0.5 M Na2SO4 | 225 F/g at 5 mV/s | 99.5 | 6000 | 34.1 Wh/kg | 251 W/kg | [ |
Fig. 9. (a) Comparative charge/discharge study of VM-1, VM-2, VM-3, VM-4, V2O5 and Mn3O4 at a current density of 5 A/g. (b) EIS study of VM-1, VM-2, VM-3, VM-4, rGO, V2O5 and Mn3O4. Reproduced with permission. Copyright (2019), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim [89]. (c) SEM images of the Mn3O4-Co3O4 products after heat treatment at 450 °C for 30 min. (d) TEM images of Mn3O4-Co3O4 Reproduced with permission. Copyright (2012), The Royal Society of Chemistry [92]. (e) Schematic representation for the microwave-assisted formation of Mn3O4-Fe2O3/Fe3O4@rGO ternary hybrids. Reproduced with permission. Copyright (2019), Elsevier B.V. [95]. (f) Low and high magnification SEM images for MNN-12. (g) EDX mapping of Ni, Co, Mn, and O for MNN-12 Reproduced with permission. Copyright (2019), Elsevier Ltd [96]. (h) CV plots at 5 mV/s for Mn-5, Ni-5, MnNi-5, and MnNi-12 in 1 M KOH electrolyte Reproduced with permission. Copyright 2017, Elsevier Ltd [100].
Fig. 10. (a) Schematic illustration for the formation of MoS2/Mn3O4 nanostructure. The black sheets represent MoS2 nanosheets and the orange ball represents Mn3O4 nanoparticles. (b) Low TEM image of MoS2 Reproduced with permission. Copyright 2016, Elsevier Ltd. [102]. (c) Schematic illustration for the fabrication of Mn3O4/MnS. (d) TEM image of Mn3O4/MnS heterostructures building multi-shelled hollow microspheres. (e) Electrochemical performance of the samples for supercapacitors. CV curves of all samples at the scan rate of 50 mV/s. (f) Nyquist plots in a frequency range from 0.1 Hz to 100 kHz for Mn2O3, Mn3O4, Mn3O4/MnS, and MnS. (g) Cycling performance at a constant current density of 10 A/g. Reproduced with permission. Copyright (2019), Elsevier B.V [103]. (h) TEM image of AgNW@Mn3O4. (i) CV plots of the AgNW@Mn3O4 and Mn3O4 electrodes at the same scan rate. (j) Capacitance retention of the ASC device with cycle numbers (a red LED powered by the ASC device shown in the inset). Reproduced with permission. Copyright 2017, Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim [24].
Mn3O4-metal based nanocomposites | ||||||||
---|---|---|---|---|---|---|---|---|
Sr. No. | Material | Electrolyte | Specific capacitance | Capacitive retention (%) | Cycles | Energy density (Wh/kg) | Power density (W/kg) | Refs. |
1 | Mn3O4/V2O5 | - | 1008 F/g at 5 A/g | 111 | 5000 | 44.9 | 1.76 | [ |
2 | Mn3O4/V2O5 | 1 M Na2SO4 -PVA | 768 F/g at 2mV/s | - | - | - | [ | |
3 | Mn3O4/TiO2 | 1 M Na2SO4 | 570 F/g at 1 A/g | 91.8 | 2000 | - | - | [ |
4 | Co3O4/Mn3O4 | 1 M Na2SO4 | 450 F/g at 2 mV/s | 98 | 2000 | 85.6 | 333 | [ |
5 | Mn3O4/Ni(OH)2 | 1 M KOH | 742 F/g at 1 A/g | 15.3 | 168.8 | [ | ||
6 | Mn3O4/Fe3O4-G | 1 M Na2SO4 | 58.46 F/g at 50 mV/s | 100 | 5000 | - | - | [ |
7 | Mn3O4-Au-Fe2O3- | 0.5 M H2SO4 | 580 F/g at 1 A/g | 89 | 2000 | 36.12 | 1994 | [ |
8 | Mn3O4-Fe2O3/Fe3O4@rGO | 1.0 M KOH | 590.7 F/g at 5 mV/s | 64.5 | 1000 | - | - | [ |
9 | NiCo-LDH/Mn3O4 | 3 M KOH | 1034.33 C/g at 1 mA/cm2 | 82 | 5000 | 57.03 | 765.8 | [ |
10 | Mn3O4@NiCo2O4@NiO | 2 M KOH | 1905 F/g at 1 A/g | 92 | 10,000 | 76.8 | 800 | [ |
11 | Mn3O4-NiO-Co3O4 | 0.5 M KOH/0.04 M K3Fe(CN)6 | 7404 F/g at 20 A/g | 82 | 1800 | 1028 | 99 k | [ |
12 | Mn3O4/ Cr2O3 | 1 M KOH | 494 F/g at 5 mA/cm2 | - | - | - | [ | |
13 | Mn3O4-CeO2 | 1 M Na2SO4 | 310 F/g at 2 A/g | 92 | 1000 | - | - | [ |
14 | Mn3O4/Ni(OH)2 | 1 M KOH | 707 F/g at 1 A/g | 89 | 2000 | 17.8 | 162 | [ |
15 | Mn3O4/ZnMn2O4 | 1 M Na2SO4 | 321 F/g at 1 mV/s | 93 | 2000 | - | - | [ |
5 | Mn3O4/MnS | 2 M KOH | 744 F/g at 20 A/g | 97.7 | 10,000 | 65.8 Wh /kg | 16000 W/kg | [ |
17 | MoS2/Mn3O4 | 1 M Na2SO4 | 119 F/g at 1 A/g | 69.3 | 2000 | - | - | [ |
18 | Ag@Mn3O4 | 0.5 M Na2SO4 | 203 F/g at 0.25 A/g | 94 | 5000 | 28 Wh/kg | 320 W/kg | [ |
Table 4. Comparison of electrochemical parameters of Mn3O4/metal-based composite.
Mn3O4-metal based nanocomposites | ||||||||
---|---|---|---|---|---|---|---|---|
Sr. No. | Material | Electrolyte | Specific capacitance | Capacitive retention (%) | Cycles | Energy density (Wh/kg) | Power density (W/kg) | Refs. |
1 | Mn3O4/V2O5 | - | 1008 F/g at 5 A/g | 111 | 5000 | 44.9 | 1.76 | [ |
2 | Mn3O4/V2O5 | 1 M Na2SO4 -PVA | 768 F/g at 2mV/s | - | - | - | [ | |
3 | Mn3O4/TiO2 | 1 M Na2SO4 | 570 F/g at 1 A/g | 91.8 | 2000 | - | - | [ |
4 | Co3O4/Mn3O4 | 1 M Na2SO4 | 450 F/g at 2 mV/s | 98 | 2000 | 85.6 | 333 | [ |
5 | Mn3O4/Ni(OH)2 | 1 M KOH | 742 F/g at 1 A/g | 15.3 | 168.8 | [ | ||
6 | Mn3O4/Fe3O4-G | 1 M Na2SO4 | 58.46 F/g at 50 mV/s | 100 | 5000 | - | - | [ |
7 | Mn3O4-Au-Fe2O3- | 0.5 M H2SO4 | 580 F/g at 1 A/g | 89 | 2000 | 36.12 | 1994 | [ |
8 | Mn3O4-Fe2O3/Fe3O4@rGO | 1.0 M KOH | 590.7 F/g at 5 mV/s | 64.5 | 1000 | - | - | [ |
9 | NiCo-LDH/Mn3O4 | 3 M KOH | 1034.33 C/g at 1 mA/cm2 | 82 | 5000 | 57.03 | 765.8 | [ |
10 | Mn3O4@NiCo2O4@NiO | 2 M KOH | 1905 F/g at 1 A/g | 92 | 10,000 | 76.8 | 800 | [ |
11 | Mn3O4-NiO-Co3O4 | 0.5 M KOH/0.04 M K3Fe(CN)6 | 7404 F/g at 20 A/g | 82 | 1800 | 1028 | 99 k | [ |
12 | Mn3O4/ Cr2O3 | 1 M KOH | 494 F/g at 5 mA/cm2 | - | - | - | [ | |
13 | Mn3O4-CeO2 | 1 M Na2SO4 | 310 F/g at 2 A/g | 92 | 1000 | - | - | [ |
14 | Mn3O4/Ni(OH)2 | 1 M KOH | 707 F/g at 1 A/g | 89 | 2000 | 17.8 | 162 | [ |
15 | Mn3O4/ZnMn2O4 | 1 M Na2SO4 | 321 F/g at 1 mV/s | 93 | 2000 | - | - | [ |
5 | Mn3O4/MnS | 2 M KOH | 744 F/g at 20 A/g | 97.7 | 10,000 | 65.8 Wh /kg | 16000 W/kg | [ |
17 | MoS2/Mn3O4 | 1 M Na2SO4 | 119 F/g at 1 A/g | 69.3 | 2000 | - | - | [ |
18 | Ag@Mn3O4 | 0.5 M Na2SO4 | 203 F/g at 0.25 A/g | 94 | 5000 | 28 Wh/kg | 320 W/kg | [ |
Fig. 11. (a) SEM image of Mn3O4/PANI hydrogel with different Mn3O4/PANi. (b) EIS spectra of Mn3O4, PANi, Mn3O4/PANi-A, and Mn3O4/PANi-B electrodes. (c) Cycling performance of different electrodes measured at 10 A/g for 2000 cycles. Reproduced with permission. Copyright (2018), Springer Nature [104]. (d) A fabrication process for the growth of Mn3O4 nanoparticles on activated carbon via employing polyaniline layer as the structural/interface coupling bridge. Reproduced with permission. Copyright (2021), Elsevier B.V [105]. (e) galvanostatic charge-discharge of Mn3O4-GO, Mn3O4-GO-PANi with stirring, and Mn3O4-GOPANi without stirring (1:0.5) at current density 0.3 A/g Reproduced with permission. Copyright (2019), Springer-Verlag GmbH Germany [107]. (f) SEM image and (g) TEM image of PANI@Mn3O4/GNP-CF after PANI coating. Reproduced with permission. Copyright (2019), Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim [108].
Sr. No. | Material | Electrolyte | Specific capacitance | Capacitive Retention (%) | Cycles | Energy density (Wh/kg) | Power density 0 (W/kg) | Refs. |
---|---|---|---|---|---|---|---|---|
Mn3O4-polymer-based hybrid nanocomposites | ||||||||
1 | Mn3O4/PANI | 6 M KOH | 422 F/g at 0.5 A/g | 89 | 2000 | - | - | [ |
2 | Mn3O4/G/PANI | 1 M H2SO4 | 660 F/g at 0.2 A/g | 89 | 4000 | 23 | 600 | [ |
3 | Mn3O4/GO/PANI | 1 M H2SO4 | 829.27 F/g at 0.3 A/g | 94 | 1800 | 121 | 891 | [ |
4 | Mn3O4/PANI/AC | 6 M KOH | 352 F/g at 0.5 A/g | 90 | 10,000 | 33.8 | 152 | [ |
5 | Mn3O4- G-PANI | 1 M H2SO4 | 452 F/g at 1 mV/s | 89 | 1000 | - | - | [ |
Doping of metal atoms in Mn3O4 | ||||||||
6 | Cr- Mn3O4 | 1 M Na2SO4 | 272 F/g at 0.5 A/g | 70 | 1000 | - | - | [ |
Co- Mn3O4 | 209 F/g at 0.5 A/g | - | - | |||||
Ni- Mn3O4 | 184 F/g at 0.5 A/g | - | - | |||||
Cu- Mn3O4 | 134 F/g at 0.5 A/g | - | - | |||||
7 | Sn-Mn3O4/G | 6 M KOH | 216 F/g at 5 A/g | 93 | 10,000 | - | - | [ |
Table 5. Comparison of electrochemical parameters of Mn3O4/polymer-based hybrid composite and doping of metal atoms in Mn3O4.
Sr. No. | Material | Electrolyte | Specific capacitance | Capacitive Retention (%) | Cycles | Energy density (Wh/kg) | Power density 0 (W/kg) | Refs. |
---|---|---|---|---|---|---|---|---|
Mn3O4-polymer-based hybrid nanocomposites | ||||||||
1 | Mn3O4/PANI | 6 M KOH | 422 F/g at 0.5 A/g | 89 | 2000 | - | - | [ |
2 | Mn3O4/G/PANI | 1 M H2SO4 | 660 F/g at 0.2 A/g | 89 | 4000 | 23 | 600 | [ |
3 | Mn3O4/GO/PANI | 1 M H2SO4 | 829.27 F/g at 0.3 A/g | 94 | 1800 | 121 | 891 | [ |
4 | Mn3O4/PANI/AC | 6 M KOH | 352 F/g at 0.5 A/g | 90 | 10,000 | 33.8 | 152 | [ |
5 | Mn3O4- G-PANI | 1 M H2SO4 | 452 F/g at 1 mV/s | 89 | 1000 | - | - | [ |
Doping of metal atoms in Mn3O4 | ||||||||
6 | Cr- Mn3O4 | 1 M Na2SO4 | 272 F/g at 0.5 A/g | 70 | 1000 | - | - | [ |
Co- Mn3O4 | 209 F/g at 0.5 A/g | - | - | |||||
Ni- Mn3O4 | 184 F/g at 0.5 A/g | - | - | |||||
Cu- Mn3O4 | 134 F/g at 0.5 A/g | - | - | |||||
7 | Sn-Mn3O4/G | 6 M KOH | 216 F/g at 5 A/g | 93 | 10,000 | - | - | [ |
Fig. 12. (a) TEM and HRTEM images of pristine Mn3O4 nanocrystals. The insets show the SAED patterns. (b) Representative CV curves of doped Mn3O4 nanocrystals at a scan rate of 10 mV/s. (c) Nyquist plots of pristine and doped Mn3O4 electrodes. Inset is the equivalent circuit. Reproduced with permission. Copyright 2013, American Chemical Society [60]. (d) TEM picture of Sn-Mn3O4/C. (e) Galvanostatic charge/discharge curves of Mn3O4, Sn-Mn3O4, and Sn-Mn3O4/C at 0.5 A/g. Reproduced with permission. Copyright 2013, Elsevier B.V. [109].
[1] |
J. Murray, D. King, Nature 481 (7382) (2012) 433-435.
DOI URL |
[2] |
H. Song, M. Wu, Z. Tang, J. Tse, B. Yang, S. Lu, Angew. Chem. Int. Ed. 60 (13) (2021) 7234-7244.
DOI URL |
[3] |
H. Wu, S. Lu, B. Yang, Acc. Mater. Res. 3 (2022) 319-330.
DOI URL |
[4] |
Y. Liu, X. Li, Q. Zhang, W. Li, Y. Xie, H. Liu, L. Shang, Z. Liu, Z. Chen, L. Gu, Z. Tang, T. Zhang, S. Lu, Angew. Chem. Int. Ed. 59 (4) (2020) 1718-1726.
DOI URL |
[5] |
J. Qi, Y. Yan, Y. Cai, J. Cao, J. Feng, Adv. Funct. Mater. 31 (3) (2021) 2006030.
DOI URL |
[6] |
V. Aravindan, J. Gnanaraj, Y. Lee, S. Madhavi, Chem. Rev. 114 (23) (2014) 11619-11635.
DOI URL |
[7] |
B. Adams, R. Black, C. Radtke, Z. Williams, B. Mehdi, N. Browning, L. Nazar, ACS Nano 8 (12) (2014) 12483-12493.
DOI URL |
[8] |
A. Dehghani-Sanij, E. Tharumalingam, M. Dusseault, R. Fraser, Renew. Sustain. Energy Rev. 104 (2019) 192-208.
DOI URL |
[9] | https://www.scientificamerican.com/article/how-lithium-ion-batteries-grounded-the-dreamliner/ , 2014. |
[10] | https://www.forbes.com/sites/neilwinton/2020/08/23/incompetent-charging-could-stall-electric-car-sales-in-europe-excluding-tesla/?sh=357959562f91 , 2020. |
[11] |
W. Raza, F. Ali, N. Raza, Y. Luo, K. Kim, J. Yang, S. Kumar, A. Mehmood, E. Kwon, Nano Energy 52 (2018) 441-473.
DOI URL |
[12] |
S. Huang, X. Zhu, S. Sarkar, Y. Zhao, APL Mater. 7 (10) (2019) 100901.
DOI URL |
[13] |
W. Wei, X. Cui, W. Chen, D. Ivey, Chem. Soc. Rev. 40 (3) (2011) 1697-1721.
DOI URL |
[14] |
T. Zhang, L. Kong, M. Liu, Y. Dai, K. Yan, B. Hu, Y. Luo, L. Kang, Mater. Des. 112 (2016) 88-96.
DOI URL |
[15] | J. Li, D. Chen, Q. Wu, Eur. J. Inorg. Chem. 2019 (10) (2019) 1301-1312. |
[16] |
M. Zhang, Q. Li, D. Fang, I.A. Ayhan, Y. Zhou, L. Dong, C. Xiong, Q. Wang, RSC Adv. 5 (116) (2015) 96205-96212.
DOI URL |
[17] |
S. Korkmaz, F. Meydaneri Tezel, ˙ I. A. Kariper, J. Alloy. Compd. 754 (2018) 14-25.
DOI URL |
[18] |
O. Ghodbane, J. Pascal, F. Favier, ACS Appl. Mater. Interfaces 1 (5) (2009) 1130-1139.
DOI URL |
[19] |
L. Chen, J. Kang, Y. Hou, P. Liu, T. Fujita, A. Hirata, M. Chen, J. Mater. Chem. A 1 (32) (2013) 9202-9207.
DOI URL |
[20] |
W. Low, P. Khiew, S. Lim, C. Siong, E. Ezeigwe, J. Alloy. Compd. 775 (2019) 1324-1356.
DOI URL |
[21] |
L. Dong, W. Yang, W. Yang, Y. Li, W. Wu, G. Wang, J. Mater. Chem. A 7 (23) (2019) 13810-13832.
DOI URL |
[22] |
M. Song, S. Cheng, H. Chen, W. Qin, K. Nam, S. Xu, X. Yang, A. Bongiorno, J. Lee, J. Bai, Nano Lett. 12 (7) (2012) 3483-3490.
DOI URL |
[23] |
K. Ahmed, K. Huang, Arab. J. Chem. 12 (3) (2019) 429-439.
DOI URL |
[24] |
Z. Gao, H. Wang, Z. Cao, T. Zhou, C. An, Y. Zhao, Energy Technol. 5 (12) (2017) 2275-2282.
DOI URL |
[25] |
B. Ameri, S. Davarani, H. Moazami, H. Darjazi, J. Alloy. Compd. 720 (2017) 408-416.
DOI URL |
[26] | H. Lee, V. Manivannan, J. Goodenough, C. R. Sci. Ser. IIC-Chem. 2 (11) (1999) 565-577. |
[27] | T. Tsuzuki, R. He, A. Dodd, M. Saunders, Nanomaterials 9 (3) (2019) 481 (Basel). |
[28] |
B. Liu, L. Qi, J. Ye, J. Wang, C. Xu, New J. Chem. 41 (22) (2017) 13454-13461.
DOI URL |
[29] | L. Wang, Y. Li, Z. Han, L. Chen, B. Qian, X. Jiang, J. Pinto, G. Yang, J. Mater. Chem. A 1 (29) (2013) 8385-8397. |
[30] |
H. Huang, L. Zhang, Y. Xia, Y. Gan, X. Tao, C. Liang, W. Zhang, New J. Chem. 38 (10) (2014) 4743-4747.
DOI URL |
[31] | N. Greenwood, A. Earnshaw, Chemistry of the Elements, Elsevier, 2012. |
[32] |
P. Garcês Gonçalves, H. De Abreu, H. Duarte, J. Phys. Chem. C 122 (36) (2018) 20841-20849.
DOI URL |
[33] | S. Dorris, T. Mason, J. Phys. Chem. C 71 (5) (1988) 379-385. |
[34] |
S. Hirai, Y. Goto, Y. Sakai, A. Wakatsuki, Y. Kamihara, M. Matoba, J. Phys. Soc. Jpn. 84 (11) (2015) 114702.
DOI URL |
[35] |
A. Ganguly, O. Anjaneyulu, K. Ojha, A. Ganguli, CrystEngComm 17 (47) (2015) 8978-9001.
DOI URL |
[36] |
S. Yin, X. Wang, Z. Mou, Y. Wu, H. Huang, M. Zhu, Y. Du, P. Yang, Phys. Chem. Chem. Phys. 16 (23) (2014) 11289-11296.
DOI URL |
[37] |
X. Fan, Y. Cui, P. Liu, L. Gou, L. Xu, D. Li, Phys. Chem. Chem. Phys. 18 (32) (2016) 22224-22234.
DOI URL |
[38] |
R. Metselaar, R. Van Tol, P. Piercy, J. Solid State Chem. 38 (3) (1981) 335-341.
DOI URL |
[39] |
P. Suktha, N. Phattharasupakun, P. Dittanet, M. Sawangphruk, RSC Adv. 7 (16) (2017) 9958-9963.
DOI URL |
[40] | M. Young, A. Holder, S. George, C. Musgrave, ACS Appl. Energy Mater. 27 (4) (2014) 1172-1180. |
[41] |
G. Chen, Prog. Nat. Sci. Mater. Int. 23 (3) (2013) 245-255.
DOI URL |
[42] |
E. Lee, L. Lee, M. Abbas, J. Bang, Phys. Chem. Chem. Phys. 19 (31) (2017) 21140-21151.
DOI URL |
[43] |
M. Aghazadeh, M. Asadi, M.R. Ganjali, P. Norouzi, B. Sabour, M. Emamal-izadeh, Thin Solid Films 634 (2017) 24-32.
DOI URL |
[44] | R. Cheraghali, M. Aghazadeh, Anal. Bioanal. Electrochem. 8 (2) (2016) 193-206. |
[45] |
H. Jiang, T. Zhao, C. Yan, J. Ma, C. Li, Nanoscale 2 (10) (2010) 2195-2198.
DOI PMID |
[46] | D. Shaik, P. Rosaiah, K.S. Ganesh, Y. Qiu, O.M. Hussain, Mater. Sci. Semicon-duct. Process. 84 (2018) 83-90. |
[47] |
T. Yousefi, A. Golikand, M. Mashhadizadeh, M. Aghazadeh, Curr. Appl. Phys. 12 (2) (2012) 544-549.
DOI URL |
[48] |
Y. Qiao, Q. Sun, J. Xi, H. Cui, Y. Tang, X. Wang, J. Alloy. Compd. 660 (2016) 416-422.
DOI URL |
[49] |
A. Yadav, Thin Solid Films 608 (2016) 88-96.
DOI URL |
[50] | I. Zhitomirsky, M. Cheong, J. Wei, JOM 59 (7) (2007) 66-69. |
[51] |
B. Gnana Sundara Raj, A.M. Asiri, J. Wu, S. Anandan, J. Alloy. Compd. 636 (2015) 234-240.
DOI URL |
[52] |
N. Zhao, H. Fan, M. Zhang, J. Ma, C. Wang, A.K. Yadav, H. Li, X. Jiang, X. Cao, Nano Energy 71 (2020) 104626.
DOI URL |
[53] | R. Cheraghali, M. Aghazadeh, Anal. Bioanal. Electrochem. 8 (2016) 193-206. |
[54] |
D. Shaik, P. Rosaiah, O. Hussain, J. Electroanal. Chem. 851 (2019) 113409.
DOI URL |
[55] |
X. Liu, X. Dai, G. Wei, Y. Xi, M. Pang, V. Izotov, N. Klyui, D. Havrykov, Y. Ji, Q. Guo, W. Han, Sci. Rep. 7 (1) (2017) 45934.
DOI URL |
[56] |
L. Lyu, K. Seong, J. Kim, W. Zhang, X. Jin, D. Kim, Y. Jeon, J. Kang, Y. Piao, Nano-Micro Lett. 11 (1) (2019) 88.
DOI URL |
[57] |
K. Oyedotun, D. Momodu, M. Naguib, A. Mirghni, T. Masikhwa, A. Khaleed, M. Kebede, N. Manyala, Electrochim. Acta 301 (2019) 4 87-4 99.
DOI URL |
[58] | F. Ran, L. Wang, L. Zhao, Y. Tan, L. Kong, L. Kang, Adv. Mater. Res. 463-464 (2012) 555-559. |
[59] |
R. Poon, W. Liang, I. Zhitomirsky, Metall. Mater. Trans. A 51 (2) (2020) 855-862.
DOI |
[60] |
R. Dong, Q. Ye, L. Kuang, X. Lu, Y. Zhang, X. Zhang, G. Tan, Y. Wen, F. Wang, ACS Appl. Mater. Interfaces 5 (19) (2013) 9508-9516.
DOI URL |
[61] |
H. Wang, C. Peng, F. Peng, H. Yu, J. Yang, Mater. Sci. Eng. B 176 (14) (2011) 1073-1078.
DOI URL |
[62] |
X. Xie, L. Gao, Carbon 45 (12) (2007) 2365-2373.
DOI URL |
[63] |
V. Subramanian, H. Zhu, B. Wei, Electrochem. Commun. 8 (5) (2006) 827-832.
DOI URL |
[64] |
D. Dubal, R. Holze, New J. Chem. 37 (2) (2013) 403-408.
DOI URL |
[65] |
X. Cui, F. Hu, W. Wei, W. Chen, Carbon 49 (4) (2011) 1225-1234.
DOI URL |
[66] |
C. Chen, T. Chien, Y. Chan, C. Lin, S. Wang, Diam. Relat. Mater. 18 (2) (2009) 4 82-4 85.
DOI URL |
[67] |
G. An, P. Yu, M. Xiao, Z. Liu, Z. Miao, K. Ding, L. Mao, Nanotechnology 19 (27) (2008) 275709.
DOI URL |
[68] |
K. Jang, S. Lee, S. Yu, I. Chung, S. Choi, H. Ahn, Bull. Korean Chem. Soc. 35 (10) (2014) 2974-2978.
DOI URL |
[69] |
C. Mondal, D. Ghosh, T. Aditya, A. Sasmal, T. Pal, New J. Chem. 39 (11) (2015) 8373-8380.
DOI URL |
[70] |
V. Hiremath, M. Cho, J. Seo, New J. Chem. 42 (24) (2018) 19608-19614.
DOI URL |
[71] |
A. Kumar, D. Sarkar, S. Mukherjee, S. Patil, D. Sarma, A. Shukla, ACS Appl. Mater. Interfaces 10 (49) (2018) 42484-42493.
DOI URL |
[72] |
T. Wang, Q. Le, X. Guo, M. Huang, X. Liu, F. Dong, J. Zhang, Y.X. Zhang, ACS Sustain. Chem. Eng. 7 (1) (2019) 831-837.
DOI URL |
[73] | S. Li, L. Yu, Y. Shi, J. Fan, R. Li, G. Fan, W. Xu, J. Zhao, ACS Appl. Mater. Inter-faces 11 (10) (2019) 10178-10188. |
[74] |
M. Ata, J. Milne, I. Zhitomirsky, J. Colloid Interfaces Sci. 512 (2018) 758-766.
DOI URL |
[75] |
G. Feng, Q. Jiangying, Z. Zongbin, Z. Quan, L. Beibei, Q. Jieshan, Carbon 80 (2014) 640-650.
DOI URL |
[76] |
W. Wang, Y. Zhang, L. Zhang, Y. Shi, L. Jia, Q. Zhang, X. Xu, Mater. Lett. 213 (2018) 100-103.
DOI URL |
[77] |
S. Chen, L. Wang, M. Huang, L. Kang, Z. Lei, H. Xu, F. Shi, Z. Liu, Electrochim. Acta 242 (2017) 10-18.
DOI URL |
[78] |
H. Gao, F. Xiao, C.B. Ching, H. Duan, ACS Appl. Mater. Interfaces 4 (12) (2012) 7020-7026.
DOI URL |
[79] |
C. Zhang, L. Wang, Y. Zhao, Y. Tian, J. Liang, Carbon 107 (2016) 100-108.
DOI URL |
[80] |
Y. Du, X. Zhao, Z. Huang, Y. Li, Q. Zhang, RSC Adv. 4 (74) (2014) 39087-39094.
DOI URL |
[81] |
O. Kwon, T. Kim, J.S. Lee, S. Park, H. Park, M. Kang, J. Lee, J. Jang, H. Yoon, Small 9 (2) (2013) 248-254.
DOI URL |
[82] | K. Sambath Kumar, J. Cherusseri, J. Thomas, ACS Omega 4 (2) (2019) 4 472-4 480. |
[83] |
H. Wang, J. Deng, Y. Chen, F. Xu, Z. Wei, Y. Wang, Nano Res. 9 (9) (2016) 2672-2680.
DOI URL |
[84] |
D. Sun, L. He, Y. Lai, J. Lian, J. Sun, A. Xie, B. Lin, Materials 11 (10) (2018) 1987.
DOI URL |
[85] |
Y. Cheng, B. Li, Z. Wei, Y. Wang, D. Wei, D. Jia, Y. Feng, Y. Zhou, J. Power Sources 451 (2020) 227775.
DOI URL |
[86] |
K. Zhao, K. Lyu, S. Liu, Q. Gan, Z. He, Z. Zhou, J. Mater. Sci. 52 (1) (2017) 446-457.
DOI URL |
[87] |
L. Sun, G. Song, Y. Sun, Q. Fu, C. Pan, Electrochim. Acta 333 (2020) 135496.
DOI URL |
[88] |
S. Nagamuthu, S. Vijayakumar, G. Muralidharan, Energy Fuels 27 (6) (2013) 3508-3515.
DOI URL |
[89] |
A. Mary, A. Bose, ChemistrySelect 4 (27) (2019) 7874-7882.
DOI URL |
[90] | S. Nandhini, N. Maheswari, G. Muralidharan, AIP Conf. Proc. 1832 (1) (2017) 050040. |
[91] |
J. Zhang, Y. Wang, Y. Qin, C. Yu, L. Cui, X. Shu, J. Cui, H. Zheng, Y. Zhang, Y. Wu, J. Solid State Chem. 246 (2017) 269-277.
DOI URL |
[92] |
H. Pang, J. Deng, J. Du, S. Li, J. Li, Y. Ma, J. Zhang, J. Chen, Dalton Trans. 41 (34) (2012) 10175-10181.
DOI URL |
[93] |
B. Chong, N. Azman, M. Mohd Abdah, Y. Sulaiman, Appl. Sci. 9 (6) (2019) 1040.
DOI URL |
[94] | S. Rudra, R. Chakraborty, P. Maji, S. Koley, A. Nayak, D. Paul, M. Pradhan, Elec-trochim. Acta 324 (2019) 134865. |
[95] |
R. Kumar, S. Youssry, K. Ya, W.K. Tan, G. Kawamura, A. Matsuda, Diam. Relat. Mater. 101 (2020) 107622.
DOI URL |
[96] |
X. Feng, Y. Huang, C. Li, Y. Xiao, X. Chen, X. Gao, C. Chen, Electrochim. Acta 308 (2019) 142-149.
DOI URL |
[97] | S. Majid, Rusi, Electrochim. Acta 175 (2015) 193-201. |
[98] |
N. Zhao, H. Fan, M. Zhang, C. Wang, X. Ren, H. Peng, H. Li, X. Jiang, X. Cao, J. Alloy. Compd. 796 (2019) 111-119.
DOI |
[99] |
Q. He, H. Wang, N. Lun, Y. Qi, J. Liu, J. Feng, J. Qiu, Y. Bai, ACS Sustain. Chem. Eng. 6 (11) (2018) 15688-15696.
DOI URL |
[100] |
H. Wang, D. Li, H. Zhu, Y. Qi, H. Li, N. Lun, Y. Bai, Electrochim. Acta 249 (2017) 155-165.
DOI URL |
[101] |
G. Xu, X. Min, Q. Chen, Y. Wen, A. Tang, H. Song, J. Alloy. Compd. 691 (2017) 1018-1023.
DOI URL |
[102] |
M. Wang, H. Fei, P. Zhang, L. Yin, Electrochim. Acta 209 (2016) 389-398.
DOI URL |
[103] |
Z. Wang, H. Jia, Y. Cai, C. Li, X. Zheng, H. Liang, J. Qi, J. Cao, J. Feng, Chem. Eng. J. 392 (2020) 123890.
DOI URL |
[104] |
S. Ma, L. Zheng, Y. Shi, L. Jia, X. Xu, J. Mater. Sci. Mater. Electron. 29 (19) (2018) 16921-16931.
DOI URL |
[105] |
R. Zhuang, Y. Dong, D. Li, R. Liu, S. Zhang, Y. Yu, H. Song, J. Ma, X. Liu, X. Chen, J. Alloy. Compd. 851 (2021) 156871.
DOI URL |
[106] |
R. Boddula, R. Bolagam, P. Srinivasan, Ionics 24 (5) (2018) 1467-1474.
DOI URL |
[107] |
K. Yasoda, M. Kumar, S. Batabyal, Ionics 26 (5) (2020) 2493-2500.
DOI URL |
[108] |
L. Haghighi-Poudeh, I. Letofsky-Papst, F. Cebeci, Y. Menceloglu, M. Yildiz, B. Saner Okan, ChemNanoMat 5 (6) (2019) 792-801.
DOI |
[109] |
Y. Zhao, W. Ran, D.-B. Xiong, L. Zhang, J. Xu F. Gao, Mater. Lett. 118 (2014) 80-83.
DOI URL |
[110] | D. Shaik, P. Rosaiah, O. Hussain, Mater. Today Proc. 3 (1) (2016) 64-73. |
[111] |
F. Yang, M. Zhao, Q. Sun, Y. Qiao, RSC Adv. 5 (13) (2015) 9843-9847.
DOI URL |
[112] |
A. Shaikh, M. Waikar, R. Sonkawade, Synth. Met. 247 (2019) 1-9.
DOI URL |
[113] |
D. Dubal, R. Holze, J. Power Sources 238 (2013) 274-282.
DOI URL |
[114] |
K. Sankar, S. Senthilkumar, L. Berchmans, C. Sanjeeviraja, R. Selvan, Appl. Surf. Sci. 259 (2012) 624-630.
DOI URL |
[115] |
B. Li, X. Zhang, J. Dou, C. Hu, Ceram. Int. 45 (13) (2019) 16297-16304.
DOI URL |
[116] |
A. Km, M. M, J. B, P. Vs, S. Jayalekshmi, Electrochim. Acta 236 (2017) 424-433.
DOI URL |
[117] |
G. Jin, X. Xiao, S. Li, K. Zhao, Y. Wu, D. Sun, F. Wang, Electrochim. Acta 178 (2015) 689-698.
DOI URL |
[118] |
B. Raj, R. Ramprasad, A. Asiri, J. Wu, S. Anandan, Electrochim. Acta 156 (2015) 127-137.
DOI URL |
[119] |
L. Zhu, S. Zhang, Y. Cui, H. Song, X. Chen, Electrochim. Acta 89 (2013) 18-23.
DOI URL |
[120] | B. Wang, J. Park, C. Wang, H. Ahn, G. Wang, Electrochim. Acta 55 (22) (2010) 6 812-6 817. |
[121] |
Z. Huang, S. Li, Z. Li, J. Li, G. Zhang, L. Cao, H. Liu, J. Alloy. Compd. 830 (2020) 154637.
DOI URL |
[122] |
Y. Wu, S. Liu, H. Wang, X. Wang, X. Zhang, G. Jin, Electrochim. Acta 90 (2013) 210-218.
DOI URL |
[123] |
Y. Tian, D. Li, J. Liu, H. Wang, J. Zhang, Y. Zheng, T. Liu, S. Hou, Electrochim. Acta 257 (2017) 155-164.
DOI URL |
[124] |
X. Shi, S. Zhang, X. Chen, P.K. Chu, T. Tang, E. Mijowska, Int. J. Hydrog. Energy 44 (26) (2019) 13675-13683.
DOI URL |
[125] |
J. Qian, Y. Wang, Z. Chen, C. Liu, Y. Zhou, Y. Yang, Y. Song, B. Kong, Inorg. Chem. Commun. 104 (2019) 8-13.
DOI URL |
[126] | K. krishnasamy, K. Purushothaman, Mater. Technol. 37 (2020) 63-70. |
[1] | Jingjing Pan, Jingyang Wang. Temperature-mediated supramolecular assemblies give rise to hierarchical boron nitride nano-ribbon networks with different micro-topology [J]. J. Mater. Sci. Technol., 2022, 96(0): 160-166. |
[2] | Mohan Reddy Pallavolu, Arghya Narayan Banerjee, Ramesh Reddy Nallapureddy, Sang W. Joo. Urea-assisted hydrothermal synthesis of MnMoO4/MnCO3 hybrid electrochemical electrode and fabrication of high-performance asymmetric supercapacitor [J]. J. Mater. Sci. Technol., 2022, 96(0): 332-344. |
[3] | Shuang Liu, Enhui Wang, Shichun Liu, Chunyu Guo, Hailong Wang, Tao Yang, Xinmei Hou. Mild fabrication of SiC/C nanosheets with prolonged cycling stability as supercapacitor [J]. J. Mater. Sci. Technol., 2022, 110(0): 178-186. |
[4] | Chuanyin Xiong, Mengrui Li, Qing Han, Wei Zhao, Lei Dai, Yonghao Ni. Screen printing fabricating patterned and customized full paper-based energy storage devices with excellent photothermal, self-healing, high energy density and good electromagnetic shielding performances [J]. J. Mater. Sci. Technol., 2022, 97(0): 190-200. |
[5] | Jiaqi Dong, Chuxuan Yan, Yingzhi Chen, Wenjie Zhou, Yu Peng, Yue Zhang, Lu-Ning Wang, Zheng-Hong Huang. Organic semiconductor nanostructures: optoelectronic properties, modification strategies, and photocatalytic applications [J]. J. Mater. Sci. Technol., 2022, 113(0): 175-198. |
[6] | Dhananjay Mishra, Niraj Kumar, Ajit Kumar, Seung Gi Seo, Sung Hun Jin. Mitigation on self-discharge behaviors via morphological control of hierarchical Ni-sulfides/Ni-oxides electrodes for long-life-supercapacitors [J]. J. Mater. Sci. Technol., 2022, 113(0): 217-228. |
[7] | Ruijie Liu, Dongshi Zhang, Zhuguo Li. Femtosecond laser induced simultaneous functional nanomaterial synthesis, in situ deposition and hierarchical LIPSS nanostructuring for tunable antireflectance and iridescence applications [J]. J. Mater. Sci. Technol., 2021, 89(0): 179-185. |
[8] | Wenbin Zhang, Bei Liu, Mei Yang, Yijiang Liu, Huaming Li, Pingle Liu. Biowaste derived porous carbon sponge for high performance supercapacitors [J]. J. Mater. Sci. Technol., 2021, 95(0): 105-113. |
[9] | Xinyue Tang, Junchao Wang, Jing Li, Xinglai Zhang, Peiqing La, Xin Jiang, Baodan Liu. In-situ growth of large-area monolithic Fe2O3/TiO2 catalysts on flexible Ti mesh for CO oxidation [J]. J. Mater. Sci. Technol., 2021, 69(0): 119-128. |
[10] | Xuemin Yin, Hejun Li, Ruimei Yuan, Jinhua Lu. Metal-organic framework derived hierarchical NiCo2O4 triangle nanosheet arrays@SiC nanowires network/carbon cloth for flexible hybrid supercapacitors [J]. J. Mater. Sci. Technol., 2021, 81(0): 162-174. |
[11] | Bing Zhang, Jiankang He, Gaofeng Zheng, Yuanyuan Huang, Chaohung Wang, Peisheng He, Fanping Sui, Lingchao Meng, Liwei Lin. Electrohydrodynamic 3D printing of orderly carbon/nickel composite network as supercapacitor electrodes [J]. J. Mater. Sci. Technol., 2021, 82(0): 135-143. |
[12] | Yuyu Wei, Ping Lu, Chenxi Zhu, Kunpeng Zhao, Xun Shi, Lidong Chen, Fangfang Xu. Nano-scale compositional oscillation and phase intergrowth in Cu2S0.5Se0.5 and their role in thermal transport [J]. J. Mater. Sci. Technol., 2021, 79(0): 222-229. |
[13] | Licheng Zhao, Ping Zhang, Yanan Zhang, Zhi Zhang, Lei Yang, Zhi-Gang Chen. Facile synthesis of hierarchical Ni3Se2 nanodendrite arrays for supercapacitors [J]. J. Mater. Sci. Technol., 2020, 54(0): 69-76. |
[14] | Yiwen Hong, Jingli Xu, Jin Suk Chung, Won Mook Choi. Graphene quantum dots/Ni(OH)2 nanocomposites on carbon cloth as a binder-free electrode for supercapacitors [J]. J. Mater. Sci. Technol., 2020, 58(0): 73-79. |
[15] | Guoxiang Pan, Feng Cao, Yujian Zhang, Xinhui Xia. N-doped carbon nanofibers arrays as advanced electrodes for supercapacitors [J]. J. Mater. Sci. Technol., 2020, 55(0): 144-151. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||