J. Mater. Sci. Technol. ›› 2022, Vol. 126: 182-190.DOI: 10.1016/j.jmst.2022.03.011
• Research Article • Previous Articles Next Articles
J. Guo, Q.Y. He, Q.S. Meic, X. Huanga,*(
), G.L. Wud,*(
), O.V. Mishine,*(
)
Received:2022-02-05
Accepted:2022-03-01
Published:2022-11-01
Online:2022-11-10
Contact:
X. Huang,G.L. Wu,O.V. Mishin
About author:olmi@mek.dtu.dk (O.V. Mishin).J. Guo, Q.Y. He, Q.S. Mei, X. Huang, G.L. Wu, O.V. Mishin. Gradient microstructure, recrystallization and mechanical properties of copper processed by high pressure surface rolling[J]. J. Mater. Sci. Technol., 2022, 126: 182-190.
Fig. 1. Schematic illustration of the experimental HPSR setup: (a) side view and the coordinate system for sectioned specimens, where the red frame indicates location examined using SEM; (b) locations of steel rolls on the tool.
Fig. 2. SEM images showing regions near the surface: (a) secondary electron image taken after etching. The framed area in this image is magnified in (b) to indicate sublayers and vortex-like structures in more detail; (c, d) ECC images (taken after electropolishing) showing branched cracks in (c) and nanoscale lamellae in (d). Note that the upper region in (a, c) is a thin Cu layer electrodeposited on the top surface to protect it during metallographic preparations.
Fig. 3. Orientation maps and {111} pole figures showing the microstructure and texture at different depths: (a, e) ≤130 µm; (b, f) 370-500 µm; (c, g) 600-1100 µm; (d, h) 1500-3200 µm. Clusters of black pixels near the sample surface in (a) correspond to non-indexed EBSD patterns. The inset in (d) shows the color code for crystallographic orientations, where TD is the radial (transverse) direction of the sample. White and black lines show LABs and HABs, respectively.
Fig. 4. Parameters of the deformed microstructure in HPSR-processed copper as a function of depth: (a) average boundary spacing dND measured using ECC images for the topmost layer and using EBSD data for the other depths; (b) fraction of HABs determined using EBSD; (c) stored energy calculated from the EBSD data. Note that each data point represents the value for a layer centered at the position indicated along the X-axis.
Fig. 5. Orientation maps demonstrating the annealed microstructure (with recrystallized grains shown separately next to each orientation map) within the first 300 µm below the surface: (a) 50 min at 150 °C; (b) 130 min at 150 °C; (c) 200 min at 150 °C. Different colors in the maps correspond to different crystallographic directions as shown in the inset in Fig. 3(d). White, black and purple lines show LABs, HABs and twin boundaries, respectively.
Fig. 6. Microstructure in the subsurface of the sample annealed for 100 min at 150 °C. The microstructure is seen as a result of local differences in the quality of EBSD patterns, where dark pixels correspond to poor pattern quality, while lighter pixels correspond to better pattern quality.
Fig. 7. Quantitative parameters of recrystallized microstructure analyzed within the first 300 µm below the surface after annealing at 150 °C: (a) area fraction; (b) average recrystallized grain size measured ignoring twin boundaries.
Fig. 8. Orientation maps from different depths in the sample annealed for 960 min at 150 °C: (a) first 300 µm below the surface; (b) 600-900 µm below the surface. Different colors in the maps correspond to different crystallographic directions as shown in the inset in Fig. 3(d). White, black and purple lines show LABs, HABs and twin boundaries, respectively.
Fig. 10. Mechanical properties measured in the as-deformed sample and the sample annealed for 960 min at 150 °C: (a) Vickers hardness at different depths; (b) stress-strain curves obtained by tensile testing of 1-mm-thick specimens (80 µm to 1080 µm from the immediate surface of the disc).
| Sample | σ0.2 (MPa) | σm (MPa) | ɛu (%) | ɛf (%) |
|---|---|---|---|---|
| As-deformed HPSR | 290 | 326 | 1.5 | 16.4 |
| HPSR+ 960 min at 150 °C | 275 | 295 | 4.5 | 21.4 |
Table 1. Quantitative parameters of strength and ductility obtained during tensile tests of the as-deformed sample and the sample annealed for 960 min.
| Sample | σ0.2 (MPa) | σm (MPa) | ɛu (%) | ɛf (%) |
|---|---|---|---|---|
| As-deformed HPSR | 290 | 326 | 1.5 | 16.4 |
| HPSR+ 960 min at 150 °C | 275 | 295 | 4.5 | 21.4 |
Fig. 11. Comparison of hardness profiles in copper samples processed using different surface deformation techniques. For consistency with the literature data, all HV values are presented here in GPa.
Fig. 12. JMAK plot describing the recrystallization kinetics within the first 300 µm below the surface of the HPSR copper sample annealed at 150 °C. The Avrami exponent (n = 1.35) was determined for annealing durations in the range 50-320 min.
| [1] | T.H. Fang, W.L. Li, N.R. Tao, K. Lu, Science, 331 (2011), pp. 1587-1590. |
| [2] | L. Yang, N.R. Tao, K. Lu, L. Lu, Scr. Mater., 68 (2013), pp. 801-804. |
| [3] | X. Wu, P. Jiang, L. Chen, F. Yuan, Y.T. Zhu, Proc. Natl. Acad. Sci. U.S.A., 111 (2014), pp. 7197-7201. |
| [4] | K. Lu, J. Lu, Mater. Sci. Eng. A (2004), pp. 38- 45,375-377. |
| [5] | K. Wang, N.R. Tao, G. Liu, J. Lu, K. Lu, Acta Mater, 54 (2006), pp. 5281-5291. |
| [6] | W.L. Li, N.R. Tao, K. Lu, Scr. Mater., 59 (2008), pp. 546-549. |
| [7] | X.C. Liu, H.W. Zhang, K. Lu, Acta Mater, 96 (2015), pp. 24-36. |
| [8] | S.Q. Deng, A. Godfrey, W. Liu, C.L. Zhang, Mater.Sci. Eng. A, 639 (2015), pp. 448-455. |
| [9] | S.Q. Deng, A. Godfrey, W. Liu, N. Hansen, Scr. Mater., 117 (2016), pp. 41-45. |
| [10] | Q.S. Mei, K. Tsuchiya, H. Gao, Scr. Mater., 67 (2012), pp. 1003-1006. |
| [11] | M. Liu, J.Y. Li, Y. Ma, T.Y. Yuan, Q.S. Mei, Sur. Coat. Tech., 289 (2016)94-10. |
| [12] | J. Li, Q. Mei, Y. Li, B. Wang, Metals (Basel), 10 (2020), p. 73. |
| [13] | X. Wang, Y.S. Li, Q. Zhang, Y.H. Zhao, Y.T. Zhu, J. Mater. Sci. Technol., 33 (2017), pp. 758-761. |
| [14] | E. Maleki, S. Bagherifard, O. Unal, M. Bandini, G.H. Farrahi, M. Guagliano, Sci. Rep., 11 (2021), p. 22035. |
| [15] | X.L. Wu, M.X. Yang, F.P. Yuan, G.L. Wu, Y.J. Wei, X. Huang, Y.T. Zhu, Proc. Natl. Acad. Sci. U.S.A., 112 (2015), pp. 14501-14505. |
| [16] | S. Shahrezaei, Y. Sun, S.N. Mathaudhu, Mater.Sci. Eng. A, 761 (2019), Article 138023. |
| [17] | A. Godfrey, O.V. Mishin, Mater.Sci. Eng. A, 735 (2018), pp. 228-235. |
| [18] | X. Jiang, L. Zhang, L. Zhang, T. Huang, G. Wu, X. Huang, O.V. Mishin, Mater.Sci. Eng. A, 759 (2019), pp. 262-271. |
| [19] | X. Chen, B. Zhang, Q. Zou, G. Huang, S. Liu, J. Zhang, A. Tang, B. Jiang, F. Pan, Mater. Sci. Technol., 100 (2022), pp. 193-205. |
| [20] | A. Godfrey, W.Q. Cao, N. Hansen, Q. Liu, Metall. Mater. Trans. A, 36 (2005), pp. 2371-2378. |
| [21] | W.T. Read, Dislocation in Solids McGraw-Hill, New York (1953)pp.155-172. |
| [22] | F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena Elsevier Ltd, Oxford,2004 second ed. |
| [23] | O.V. Mishin, D. Juul Jensen, N. Hansen, Mater.Sci. Eng. A, 342 (2003), pp. 320-328. |
| [24] | A.P. Zhilyaev, T.R. McNelley, T.G. Langdon, J. Mater. Sci., 42 (2007), pp. 1517-1528. |
| [25] | O.V. Mishin, J.R. Bowen, Metall. Mater. Trans. A, 40 (2009), pp. 1684-1692. |
| [26] | S.Q. Deng, A. Godfrey, W. Liu, Acta Metall. Sin. (Engl. Lett.), 29 (2016), pp. 313-319. |
| [27] | D.A. Rigney, S. Karthikeyan, Tribol. Lett., 39 (2010), pp. 3-7. |
| [28] | M. Pouryazdan, B.J.P. Kaus, A. Rack, A. Ershov, H. Hahn, Nat. Commun., 8 (2017), p. 1611. |
| [29] | F.H. Dalla Torre, A.A. Gazder, C.F. Gu, C.H.J. Davies, E.V. Pereloma, Metall. Mater. Trans. A, 38 (2007), pp. 1080-1095. |
| [30] | X. Yang, X. Ma, J. Moering, H. Zhou, W. Wang, Y. Gong, J. Tao, Y. Zhu, X. Zhu, Mater.Sci. Eng. A, 645 (2015), pp. 280-285. |
| [31] | J. Zhang, H. Pan, H. Gao, X. Yang, X. Li, X. Liu, B. Shu, C. Li, Y. Gong, X. Zhu, Lett. Mater., 9 (2019), pp. 534-540. |
| [32] | T.H. Fang, N.R. Tao, K. Lu, Scr. Mater., 77 (2014), pp. 17-20. |
| [33] | C.X. Ren, Q. Wang, Z.J. Zhang, H.J. Yang, Z.F. Zhang, Mater.Sci. Eng. A, 727 (2018), pp. 192-199. |
| [34] | X. Zhou, X.Y. Li, K. Lu, Science, 360 (2018), pp. 526-530. |
| [35] | X. Zhou, X.Y. Li, K. Lu, Nano Mater. Sci., 2 (2020), pp. 32-38. |
| [36] | B. Yao, Z. Han, K. Lu, Wear (2012), pp. 438- 445,294-295. |
| [37] | S. Murphy, C.J. Ball, J. Inst. Met., 100 (1972), pp. 225-232. |
| [38] | B. Hutchinson, S. Jonsson, L. Ryde, Scr. Metal., 23 (1989), pp. 671-676. |
| [39] | O.V. Mishin, Y.B. Zhang, A. Godfrey, J. Mater. Sci., 52 (2017), pp. 2730-2745. |
| [1] | Rui Ma, Xiping Guo. Cooperative effects of Mo, V and Zr additions on the microstructure and properties of multi-elemental Nb-Si based alloys [J]. J. Mater. Sci. Technol., 2023, 132(0): 27-41. |
| [2] | Zhaojun Li, Kunpeng Lin, Hailiang Fang, HuiYu , Junzhuo Wang, Yimin Miao, Lianjun Wang, Jianlin Li, Wan Jiang. The mortise and tenon structure enabling lamellar carbon composites of ultra-high bending strength [J]. J. Mater. Sci. Technol., 2023, 133(0): 249-258. |
| [3] | Wei Wang, Yanke Liu, Zihan Zhang, Muxin Yang, Lingling Zhou, Jing Wang, Ping Jiang, Fuping Yuan, Xiaolei Wu. Deformation mechanisms for a new medium-Mn steel with 1.1 GPa yield strength and 50% uniform elongation [J]. J. Mater. Sci. Technol., 2023, 132(0): 110-118. |
| [4] | Y. Xing, C.J. Li, Y.K. Mu, Y.D. Jia, K.K. Song, J. Tan, G. Wang, Z.Q. Zhang, J.H. Yi, J. Eckert. Strengthening and deformation mechanism of high-strength CrMnFeCoNi high entropy alloy prepared by powder metallurgy [J]. J. Mater. Sci. Technol., 2023, 132(0): 119-131. |
| [5] | Bailing An, Rongmei Niu, Yan Xin, William L. Starch, Zhaolong Xiang, Yifeng Su, Robert E. Goddard, Jun Lu, Theo M. Siegrist, Engang Wang, Ke Han. Suppression of discontinuous precipitation and strength improvement by Sc doping in Cu-6 wt%Ag alloys [J]. J. Mater. Sci. Technol., 2023, 135(0): 80-96. |
| [6] | Zhuang Li, Pengcheng Zhao, Tiwen Lu, Kai Feng, Yonggang Tong, Binhan Sun, Ning Yao, Yu Xie, Bolun Han, Xiancheng Zhang, Shantung Tu. Effects of post annealing on the microstructure, precipitation behavior, and mechanical property of a (CoCrNi)94Al3Ti3 medium-entropy alloy fabricated by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2023, 135(0): 142-155. |
| [7] | Xu Lu, Yan Ma, Ding Peng, Roy Johnsen, Dong Wang. In situ nanomechanical characterization of hydrogen effects on nickel-based alloy 725 under different metallurgical conditions [J]. J. Mater. Sci. Technol., 2023, 135(0): 156-169. |
| [8] | Ying Zhang, Yuxuan Hou, He Zheng, Ligong Zhao, Shuangfeng Jia, Kaixuan Li, Huayu Peng, Peili Zhao, Lei Li, Weiwei Meng, Renhui Jiang, Jianbo Wang. Effects of twin orientation and twin boundary spacing on the plastic deformation behaviors in Ni nanowires [J]. J. Mater. Sci. Technol., 2023, 135(0): 231-240. |
| [9] | Mujin Yang, Chao Huang, Jiajia Han, Haichen Wu, Yilu Zhao, Tao Yang, Shenbao Jin, Chenglei Wang, Zhou Li, Ruiying Shu, Cuiping Wang, Huanming Lu, Gang Sha, Xingjun Liu. Development of the high-strength ductile ferritic alloys via regulating the intragranular and grain boundary precipitation of G-phase [J]. J. Mater. Sci. Technol., 2023, 136(0): 180-199. |
| [10] | Shuai Yuan, Jinhui Wang, Lei Zhang, Shiyu Luan, Peipeng Jin. Effect of long-period ordered stacking on twinning behavior and mechanical properties of Mg-Al-Y alloy during uniaxial hot compression [J]. J. Mater. Sci. Technol., 2023, 142(0): 152-166. |
| [11] | Wei Xiong, Amy X.Y. Guo, Shuai Zhan, Chain-Tsuan Liu, Shan Cecilia Cao. Refractory high-entropy alloys: A focused review of preparation methods and properties [J]. J. Mater. Sci. Technol., 2023, 142(0): 196-215. |
| [12] | Xiaocan Wen, Hailong Huang, Honghui Wu, Meisa Zhou, Yeqiang Bu, Xiaoyuan Yuan, Suihe Jiang, Hui Wang, Xiongjun Liu, Hongtao Wang, Jiabin Liu, Yuan Wu, Zhaoping Lu. Enhanced plastic deformation capacity in hexagonal-close-packed medium entropy alloys via facilitating cross slip [J]. J. Mater. Sci. Technol., 2023, 134(0): 1-10. |
| [13] | Xinkui Zhang, Liejun Li, Zhi Wang, Hanlin Peng, Jixiang Gao, Zhengwu Peng. A novel high-strength Al-La-Mg-Mn alloy for selective laser melting [J]. J. Mater. Sci. Technol., 2023, 137(0): 205-214. |
| [14] | Ye Dong, Annan Chen, Ting Yang, Shuai Gao, Shuning Liu, Hongyi Jiang, Yusheng Shi, Chenglong Hu. Ultra-lightweight ceramic scaffolds with simultaneous improvement of pore interconnectivity and mechanical strength [J]. J. Mater. Sci. Technol., 2023, 137(0): 247-258. |
| [15] | Wenshu Li, YiYu Huang, ZhongHao Xie, Haoyu Chen, Weihua Li, Bin Liu, Bingfeng Wang. Mechanical property and cellular structure of an additive manufactured FeCoNiCrMo0.2 high-entropy alloy at high-velocity deformation [J]. J. Mater. Sci. Technol., 2023, 139(0): 156-166. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
