J. Mater. Sci. Technol. ›› 2022, Vol. 124: 76-85.DOI: 10.1016/j.jmst.2022.01.028
• Research Article • Previous Articles Next Articles
Yuanting Xua,1, Wanting Lina,b,1, Dandan Yuana, Shifan Chena, Fang Lia, Yanping Longa, Chao Hea, Weifeng Zhaoa,*(), Changsheng Zhaoa,c,d,*(
)
Received:
2021-10-11
Revised:
2022-01-10
Accepted:
2022-01-16
Published:
2022-10-10
Online:
2022-04-04
Contact:
Weifeng Zhao,Changsheng Zhao
About author:
zhaochsh70@163.com (C. Zhao).Yuanting Xu, Wanting Lin, Dandan Yuan, Shifan Chen, Fang Li, Yanping Long, Chao He, Weifeng Zhao, Changsheng Zhao. “1+1>2”: Highly efficient removal of organic pollutants by composite nanofibrous membrane based on the synergistic effect of adsorption and photocatalysis[J]. J. Mater. Sci. Technol., 2022, 124: 76-85.
Fig. 1. (a) Schematic illustration of the fabrication process of the BAM nanofibrous membrane, corresponding optical image (b), SEM image (c) and TEM image (d) of BAM nanofibrous membrane.
Samples | Polyethersulfone (wt%) | p(MMA-AA) copolymer (wt%) | B-C3N4(wt%) |
---|---|---|---|
PES | 19 | 0 | 0 |
BCN | 19 | 0 | 1.9 |
AM | 19 | 1.9 | 0 |
BAM | 19 | 1.9 | 1.9 |
Table 1. Recipes of different precursor solutions for nanofibrous membrane fabrication.
Samples | Polyethersulfone (wt%) | p(MMA-AA) copolymer (wt%) | B-C3N4(wt%) |
---|---|---|---|
PES | 19 | 0 | 0 |
BCN | 19 | 0 | 1.9 |
AM | 19 | 1.9 | 0 |
BAM | 19 | 1.9 | 1.9 |
Fig. 3. Surface zeta potentials (a), UV-vis diffuse reflectance absorption spectra (b) and plots of transformed Kubelka-Munk function versus photon energy (c) of the nanofibrous membranes.
Fig. 4. (a) Removal efficiency of RhB by the nanofibrous membranes under visible light irradiation, (b) the corresponding kinetics analysis, (c) adsorption-photocatalytic degradation performance of RhB by the nanofibrous membranes, (d) the UV-vis spectra of RhB solution contacting with BAM in dark and under visible light irradiation, (e) images of BAM membrane and RhB dye solutions before adsorption, after adsorption and after photocatalysis, (f) removal efficiency of RhB by BAM as well as the combination of AM and BCN with different mass.
Fig. 5. (a) Photocatalytic degradation of RhB by the BAM sample during 5 cycles, (b) adsorption-degradation performance of RhB by the BAM sample during 5 cycles, (c) schematic diagram of photocatalytic degradation for recycling under visible light irradiation, (d) SEM image of BAM membrane after 5 cycles, (e) FTIR spectra of BAM membrane before adsorption, after adsorption, after photocatalysis and after 5 cycles.
Fig. 6. (a) Removal efficiency of different organic dyes by BAM, (b) chemical structures of RhB, MB, MG, ST and MV dyes, (c) images of BAM membrane and RhB/MB/MG ternary mixture solution before being mixed and after photocatalysis, (d) UV-vis spectra of RhB/MB/MG ternary mixture at different stages, (e) images of BAM membrane and RhB/MB/MG/ST quaternary mixture solution before mixed and after photocatalysis, (f) UV-vis spectra of RhB/MB/MG/ST quaternary mixture solution at different stages.
Fig. 7. (a) Effect of trapping agents on removal efficiency of RhB by BAM under visible light irradiation, (b) DMPO spin-trapping EPR spectra in methyl alcohol solutions with BAM under visible light irradiation, (c) the proposed mechanism of photocatalytic degrading pollutants in the presence of BAM under visible light irradiation.
[1] |
A. Alsbaiee, B.J. Smith, L. Xiao, Y. Ling, D. Helbling, W.R. Dichtel, Nature 529 (2016) 190.
DOI URL |
[2] |
L. Han, B. Li, Hao. Wen, Y. Guo, Z. Lin, J. Mater. Sci. Technol. 70 (2021) 176-184.
DOI URL |
[3] |
D. Pan, J. Tang, Sci. Total Environ. 751 (2021) 141550.
DOI URL |
[4] |
X. Qi, Q. Zeng, X. Tong, T. Su, L. Xie, K. Yuan, J. Xu, J. Shen, J. Hazard. Mater. 402 (2021) 123359.
DOI URL |
[5] |
L.S. Copete-Pertuz, E.A. Serna-Galvis, J. Placido, R.A. Torres-Palma, A.L. Mora-Martinez, Sci. Total Environ. 772 (2021) 145449.
DOI URL |
[6] |
C. Zhao, J. Zhou, Y. Yan, L. Yang, G. Xing, H. Li, P. Wu, M. Wang, H. Zheng, Sci. Total Environ. 765 (2021) 142795.
DOI URL |
[7] |
Z. Long, Q. Li, T. Wei, G. Zhang, Z. Ren, J. Hazard. Mater. 395 (2020) 122599.
DOI URL |
[8] | Y. Xu, W. Lin, H. Wang, J. Guo, D. Yuan, J. Bao, S. Sun, W. Zhao, C. Zhao, Com- pos. Sci. Technol. 199 (2020) 108353. |
[9] |
V.K. Sharma, M. Feng, J. Hazard. Mater. 372 (2019) 3-16.
DOI URL |
[10] | D. Qin, W. Lu, X. Wang, N. Li, X. Chen, Z. Zhu, W. Chen, ACS Appl. Mater. Inter- faces 8 (39) (2016) 25962-25970. |
[11] |
X. Liu, S. Gu, Y. Zhao, G. Zhou, W. Li, J. Mater. Sci. Technol. 56 (2020) 45-68.
DOI URL |
[12] |
J. Hu, C. Chen, T. Hu, J. Li, H. Lu, Y. Zheng, X. Yang, C. Guo, C.M. Li, J. Mater. Chem. A 8 (2020) 19484-19492.
DOI URL |
[13] |
F. Yi, H. Gan, H. Jin, W. Zhao, K. Zhang, H. Jin, H. Zhang, Y. Qian, J. Ma, Sep. Purif. Technol. 233 (2020) 115997.
DOI URL |
[14] |
W. Lu, T. Xu, Y. Wang, H. Hu, N. Li, X. Jiang, W. Chen, Appl. Catal. B Environ. 180 (2016) 20-28.
DOI URL |
[15] |
J. Liu, W. Fu, Y. Liao, J. Fan, Q. Xiang, J. Mater. Sci. Technol. 91 (2021) 224-240.
DOI URL |
[16] |
Z.S. Chen, S. Zhang, Y. Liu, N.S. Alharbi, S.O. Rabah, S.H. Wang, X.X. Wang, Sci. Total Environ. 731 (2020) 139054.
DOI URL |
[17] |
D. Zhao, Y. Wang, C.-L. Dong, Y.-C. Huang, J. Chen, F. Xue, S. Shen, L. Guo, Nat. Energy 6 (4) (2021) 388-397.
DOI URL |
[18] |
D. Zhao, C. Dong, B. Wang, C. Chen, S. Shen, Adv. Mater. 31 (43) (2019) 1903545.
DOI URL |
[19] |
Y. Chen, X. Zhang, L. Wang, X. Cheng, Q. Shang, Chem. Eng. J. 402 (2020) 126260.
DOI URL |
[20] |
L. Li, X. Zheng, Y. Chi, Y. Wang, X. Sun, Q. Yue, B. Gao, S. Xua, J. Hazard. Mater. 383 (2020) 121211.
DOI URL |
[21] |
M. Liu, D. Zhang, J. Han, C. Liu, Y. Ding, Z. Wang, A. Wang, Chem. Eng. J. 382 (2020) 123017.
DOI URL |
[22] |
Y. Chen, W. Lu, H. Shen, Y. Gu, T. Xu, Z. Zhu, G. Wang, W. Chen, Appl. Catal. B Environ. 258 (2019) 117960.
DOI URL |
[23] |
X. Li, G.H. Huang, X.J. Chen, J. Huang, M.N. Li, J.A. Yin, Y. Liang, Y. Yao, Y.P. Li, Sci. Total Environ. 792 (2021) 148462.
DOI URL |
[24] |
D. Qin, W. Lu, Z. Zhu, N. Li, T. Xu, G. Wang, W. Chen, Ind. Eng. Chem. Res. 56 (2017) 11151-11160.
DOI URL |
[25] |
J. Xue, J. Xie, W. Liu, Y. Xia, Acc. Chem. Res. 50 (8) (2017) 1976-1987.
DOI URL |
[26] |
R. Zhao, X. Shi, T. Ma, H. Rong, C. Wang, ACS Appl. Mater. Interfaces 13 (1) (2021) 755-764.
DOI URL |
[27] |
C.G. Lee, H. Javed, D. Zhang, J.H. Kim, P. Westerhoff, Q. Li, P. Alvarez, Environ. Sci. Technol. 52 (2018) 4285-4293.
DOI URL |
[28] |
Y. Gao, N. Yan, C. Jiang, C. Xu, S. Yu, P. Liang, X. Zhang, S. Liang, X. Huang, Appl. Catal. B Environ. 268 (2020) 118737.
DOI URL |
[29] |
J. Cui, F. Li, Y. Wang, Q. Zhang, W. Ma, C. Huang, Sep. Purif. Technol. 250 (2020) 117116.
DOI URL |
[30] |
P. Suja, C. Reshmi, P. Sagitha, A. Sujith, Polym. Rev. 57 (3) (2017) 467-504.
DOI URL |
[31] | Y. Xu, J. Bao, X. Zhang, W. Li, Y. Xie, S. Sun, W. Zhao, C. Zhao, J. Colloid Inter- faces Sci. 533 (2019) 526-538. |
[32] |
B. Panganiban, B. Qiao, T. Jiang, C. Delre, M.M. Obadia, T.D. Nguyen, A.A.A. Smith, A. Hall, I. Sit, M.G. Crosby, Science 359 (2018) 1239-1243.
DOI PMID |
[33] |
Z.Q. Shi, X.L. Huang, C. Wang, Y.F. Li, C. He, C.S. Zhao, Ind. Eng. Chem. Res. 53 (2014) 14084-14093.
DOI URL |
[34] |
C. Cheng, J. Shi, L. Wen, C.L. Dong, Y.-C. Huang, Y. Zhang, S. Zong, Z. Diao, S. Shen, L. Guo, Carbon 181 (2021) 193-203.
DOI URL |
[35] |
P. Wang, K. Xia, Y. Chen, Q. Tian, R. Xiong, B. Han, Q. Gao, C. Zhou, D. Yu, Mater. Lett. 301 (2021) 130347.
DOI URL |
[36] |
Y. Li, Y. Wang, C.L. Dong, Y.-C. Huang, J. Chen, Z. Zhang, F. Meng, Q. Zhang, Y. Huangfu, D. Zhao, L. Gu, S. Shen, Chem. Sci. 12 (2021) 3633-3643.
DOI URL |
[37] |
H.J. Yu, R. Shi, Y.X. Zhao, T. Bian, Y.F. Zhao, Adv. Mater. 29 (2017) 1605148.
DOI URL |
[38] |
N. Zhou, P. Qiu, H. Chen, F. Jiang, J. Taiwan Inst. Chem. E 83 (2018) 99-106.
DOI URL |
[39] |
W. Wang, H. Zhang, S. Zhang, Y. Liu, G. Wang, C. Sun, H. Zhao, Angew. Chem. Int. Ed. 58 (2019) 16644-16650.
DOI URL |
[40] |
S. Chen, Y. Guo, D. Yuan, C. He, J. Bao, S. Ai, F. Li, W. Zhao, Y. Xu, C. Zhao, Compos. Sci. Technol. 214 (2021) 108993.
DOI URL |
[41] |
Y. Xu, D. Yuan, Y. Guo, S. Chen, W. Lin, Y. Long, J. Bao, C. He, C. Cheng, C. Deng, Chem. Eng. J. 427 (2022) 131685.
DOI URL |
[42] |
C. Zhao, J. Xue, F. Ran, S. Sun, Prog. Mater. Sci. 58 (2013) 76-150.
DOI URL |
[43] |
S. Chen, C. Lv, K. Hao, L. Jin, Y. Xie, W. Zhao, S. Sun, X. Zhang, C. Zhao, J. Colloid Interfaces Sci. 538 (2019) 648-659.
DOI URL |
[44] |
Y. Xu, D. Yuan, J. Bao, Y. Xie, M. He, Z. Shi, S. Chen, C. He, W. Zhao, C. Zhao, J. Mater. Chem. A 6 (2018) 13359-13372.
DOI URL |
[45] |
C. Lv, S. Chen, Y. Xie, Z. Wei, L. Chen, J. Bao, C. He, W. Zhao, S. Sun, C. Zhao, J. Colloid Interfaces Sci. 556 (2019) 492-502.
DOI URL |
[46] |
S. Chen, Y. Xie, T. Xiao, W. Zhao, J. Li, C. Zhao, Chem. Eng. J. 337 (2018) 122-132.
DOI URL |
[47] |
L. Chen, B. Yang, P. Zhou, T. Xu, C. He, Y. Xu, W. Zhao, C. Zhao, J. Membr. Sci. 638 (2021) 119715.
DOI URL |
[48] |
P. Deng, J. Xiong, S. Lei, W. Wang, X. Ou, Y. Xu, Y. Xiao, B. Cheng, J. Mater. Chem. A 7 (39) (2019) 22385-22397.
DOI URL |
[49] |
L. Ji, L. Yan, M. Chao, M. Li, J. Gu, M. Lei, Y. Zhang, X. Wang, J. Xia, T. Chen, Y. Nie, T. Chen, Small 17 (2021) 2007122.
DOI URL |
[50] |
W. Ma, Y. Li, S. Gao, J. Cui, Q. Qu, Y. Wang, C. Huang, G. Fu, ACS Appl. Mater. Interfaces 12 (2020) 23644-23654.
DOI URL |
[51] |
Q. Tang, X. Meng, Z. Wang, J. Zhou, H. Tang, Appl. Surf. Sci. 430 (2018) 253-262.
DOI URL |
[52] |
W. Ma, M. Zhang, Y. Li, M. Kang, C. Huang, G. Fu, Environ. Sci. Nano 6 (2019) 3699-3711.
DOI URL |
[53] |
F. Wang, J. Dai, L. Huang, Y. Si, B. Ding, ACS Nano 14 (2020) 8975-8984.
DOI PMID |
[54] |
C. Nie, Z. Peng, Y. Yang, C. Cheng, L. Ma, C. Zhao, J. Hazard. Mater. 318 (2016) 255-265.
DOI URL |
[55] |
J. Bao, H. Li, Y. Xu, S. Chen, Z. Wang, C. Jiang, H. Li, Z. Wei, S. Sun, W. Zhao, C. Zhao, J. Mater. Sci. Technol. 78 (2021) 131-143.
DOI URL |
[56] |
J. Yin, W. Sun, X. Song, H. Ji, Y. Yang, S. Sun, W. Zhao, C. Zhao, Sep. Purif. Technol. 238 (2020) 116497.
DOI URL |
[57] |
S. Xu, W. Lu, S. Chen, Z. Xu, T. Xu, V.K. Sharma, W. Chen, Chem. Eng. J. 375 (2019) 121949.
DOI URL |
[58] |
S. Xiao, C. Zhou, X. Ye, Z. Lian, H. Li, ACS Appl. Mater. Interfaces 12 (2020) 32604-32614.
DOI URL |
[59] |
J. Guo, H. Zhou, S. Ting, H. Luo, J Liang, S. Yuan, New J. Chem. 43 (2019) 18146-18157.
DOI URL |
[1] | Yan-Cai Gao, Chong Wang, Chun-Xia Zhang, Hong-Wei Li, Yuqing Wu. Controlled preparation and application of glutathione capped gold and platinum alloy nanoclusters with high peroxidase-like activity [J]. J. Mater. Sci. Technol., 2022, 109(0): 140-146. |
[2] | Jing Wu, Meng Li, Chuanchuan Lin, Pengfei Gao, Rui Zhang, Xuan Li, Jixi Zhang, Kaiyong Cai. Moderated crevice corrosion susceptibility of Ti6Al4V implant material due to albumin-corrosion interaction [J]. J. Mater. Sci. Technol., 2022, 109(0): 209-220. |
[3] | Qiyun Zhang, Renquan Wu, Yunhong Zhou, Qilang Lin, Changqing Fang. A novel surface-oxidized rigid carbon foam with hierarchical macro-nanoporous structure for efficient removal of malachite green and lead ion [J]. J. Mater. Sci. Technol., 2022, 103(0): 15-28. |
[4] | Q. Zhang, F.W. Tang, Z. Zhao, Z.R. Nie, X.Y. Song. Surface modification of tungsten oxide by oxygen vacancies for hydrogen adsorption [J]. J. Mater. Sci. Technol., 2022, 117(0): 23-35. |
[5] | Linggen Kong, Inna Karatchevtseva, Tao Wei, Nicholas Scales. Synthesis of hierarchical mesoporous Ln2Ti2O7 (Ln = Y, Tb-Yb) pyrochlores and uranyl sorption properties [J]. J. Mater. Sci. Technol., 2022, 113(0): 22-32. |
[6] | Ting He, Jiajia Ru, Yutong Feng, Dapeng Bi, Jiansheng Zhang, Feng Gu, Chi Zhang, Jinhu Yang. Templated spherical coassembly strategy to fabricate MoS2/C hollow spheres with physical/chemical polysulfides trapping for lithium-sulfur batteries [J]. J. Mater. Sci. Technol., 2022, 98(0): 136-142. |
[7] | Junmao Hong, Le Kang, Xiaofeng Shi, Renbo Wei, Xianmin Mai, Duo Pan, Nithesh Naik, Zhanhu Guo. Highly efficient removal of trace lead (II) from wastewater by 1,4-dicarboxybenzene modified Fe/Co metal organic nanosheets [J]. J. Mater. Sci. Technol., 2022, 98(0): 212-218. |
[8] | Jingqi Chen, Xianlei Hu, Haitao Gao, Shu Yan, Shoudong Chen, Xianghua Liu. Graphene-wrapped MnCO3/Mn3O4 nanocomposite as an advanced anode material for lithium-ion batteries: Synergistic effect and electrochemical performances [J]. J. Mater. Sci. Technol., 2022, 99(0): 9-17. |
[9] | Han Li, Hui Li, Ziqiang Wu, Lili Zhu, Changdian Li, Shuai Lin, Xuebin Zhu, Yuping Sun. Realization of high-purity 1T-MoS2 by hydrothermal synthesis through synergistic effect of nitric acid and ethanol for supercapacitors [J]. J. Mater. Sci. Technol., 2022, 123(0): 34-40. |
[10] | Chengxiao Peng, Wenjuan Fan, Qian Li, Wenna Han, Xuefeng Chen, Guangbiao Zhang, Yuli Yan, Qinfen Gu, Chao Wang, Huarong Zhang, Peiyu Zhang. Boosting photocatalytic activity through tuning electron spin states and external magnetic fields [J]. J. Mater. Sci. Technol., 2022, 115(0): 208-220. |
[11] | Fei Pan, Chunyi Tong, Zhaoyang Wang, Fenghua Xu d, Xiaofei Wang, Baicheng Weng, Dawei Pan b, Rilong Zhu. Novel sulfhydryl functionalized covalent organic frameworks for ultra-trace Hg2+ removal from aqueous solution [J]. J. Mater. Sci. Technol., 2021, 93(0): 89-95. |
[12] | Yue Tian, Qingqiang Cui, Linlin Xu, Anxin Jiao, Shuang Li, Xuelin Wang, Ming Chen. Pronounced interfacial interaction in icosahedral Au@C60 core-shell nanostructure for boosting direct plasmonic photocatalysis under alkaline condition [J]. J. Mater. Sci. Technol., 2021, 94(0): 10-21. |
[13] | Bing Leng, Xinglai Zhang, Shanshan Chen, Jing Li, Ziqing Sun, Zongyi Ma, Wenjin Yang, Bingchun Zhang, Ke Yang, Shu Guo. Highly efficient visible-light photocatalytic degradation and antibacterial activity by GaN:ZnO solid solution nanoparticles [J]. J. Mater. Sci. Technol., 2021, 94(0): 67-76. |
[14] | Nan Sun, Pei-Long Li, Ming Wen, Jiang-Feng Song, Zhi Zhang, Wen-Bin Yang, Yuan-Lin Zhou, De-Li Luo, Quan-Ping Zhang. Insights into heat management of hydrogen adsorption for improved hydrogen isotope separation of porous materials [J]. J. Mater. Sci. Technol., 2021, 76(0): 200-206. |
[15] | Gaoqi Tian, Songrui Wei, Zhangtao Guo, Shiwei Wu, Zhongli Chen, Fuming Xu, Yang Cao, Zheng Liu, Jieqiong Wang, Lei Ding, Jinchun Tu, Hao Zeng. Hierarchical NiMoP2-Ni2P with amorphous interface as superior bifunctional electrocatalysts for overall water splitting [J]. J. Mater. Sci. Technol., 2021, 77(0): 108-116. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||