J. Mater. Sci. Technol. ›› 2022, Vol. 124: 260-272.DOI: 10.1016/j.jmst.2022.02.026
• Research Article • Previous Articles
Zhongjie Lia,1, Jiajun Qiub,1, Hao Xua, Anping Donga,c,*(), Lin Hea, Guoliang Zhua,c, Dafan Dua, Hui Xinga, Xuanyong Liub,*(
), Baode Suna,c
Received:
2021-11-25
Revised:
2022-01-18
Accepted:
2022-02-05
Published:
2022-10-10
Online:
2022-04-06
Contact:
Anping Dong,Xuanyong Liu
About author:
xyliu@mail.sic.ac.cn (X. Liu)Zhongjie Li, Jiajun Qiu, Hao Xu, Anping Dong, Lin He, Guoliang Zhu, Dafan Du, Hui Xing, Xuanyong Liu, Baode Sun. Characteristics of β-type Ti-41Nb alloy produced by laser powder bed fusion: Microstructure, mechanical properties and in vitro biocompatibility[J]. J. Mater. Sci. Technol., 2022, 124: 260-272.
Ti | Nb | Fe | O | N |
---|---|---|---|---|
Bal. | 41.6 | 0.22 | 0.08 | 0.0078 |
Table. 1. Primarily chemical composition of Ti-41Nb raw powder (wt.%).
Ti | Nb | Fe | O | N |
---|---|---|---|---|
Bal. | 41.6 | 0.22 | 0.08 | 0.0078 |
Fig. 1. (a) Schematic diagram of l-PBF technique; (b) chessboard scanning strategy, defined building direction (BD) and coordinate axis; (c) cubic samples for parameter optimization; (d) rectangle samples for tensile tests and (e) tensile specimen.
Fig. 2. Characterization of Ti-41Nb pre-alloyed powder: (a) SEM morphology; (b) particle size distribution; (c) XRD pattern of the raw powder; (d-f) backscattered electron (BSE) image and corresponding EDS mapping results.
Fig. 3. (a) Contour map of the relative density of l-PBFed Ti-41Nb alloys with variable quantity containing laser powder and laser scanning velocity; (b) relationship between the energy density and metallurgical quality; (c) surface profile on top surface profile and (d) 3D micro-CT image of the l-PBFed Ti-41Nb alloy under the proper parameter.
Fig. 6. EBSD inverse pole figure (IPF), grain boundaries (GB) and kernel average misorientation (KAM) of the selected yellow rectangle: (a) horizontal plane of l-PBFed Ti-41Nb alloy; (b) vertical plane of l-PBFed Ti-41Nb alloy; (c) CRA alloy.
Fig. 7. Grain size distribution maps: (a) horizontal plane of l-PBFed Ti-41Nb alloy; (b) vertical plane of l-PBFed Ti-41Nb alloy (width of the columnar grains); (c) CRA alloy.
Fig. 9. FE-TEM characterization: (a) bright field TEM images; (b, c) corresponding EDS mapping; (d) SAED along the [-113]β zone axis and (e) corresponding dark-field TEM image recorded using reflection spot marked by the red circle of l-PBFed Ti-41Nb alloy; (f) micrograph and corresponding SAED along the [-113]β zone axis of CRA Ti-41Nb sample.
Fig. 10. Mechanical properties of both l-PBFed and CRA samples: (a) tensile engineering stress-strain curves; (b) histogram of tensile strength and elongation; typical fracture surface of (c) l-PBFed sample and (d) CRA specimen.
Fig. 12. Fluorescent images of rBMSCs cultured on (a) CP-Ti and (b) l-PBFed Ti-41Nb for 24 h with actin stained with AlexaFluor 546 phalloidin (red) and nucleus stained with DAPI (blue).
Fig. 13. (a) Fluorescent density of alamarblue for rBMSCs cultured on CP-Ti and l-PBFed Ti-41Nb alloys for 1, 4, and 7 days; (b) SEM cell morphologies of rBMSCs cultured on CP-Ti and l-PBFed Ti-41Nb alloys for 1, 4, and 7 days.
Fig. 14. (a) Relative activity of ALP on CP -Ti and l-PBFed Ti-41Nb alloys after cultured for 7 and 14 days (??p < 0.01); (b) ALP positive areas of rBMSCs cultured on CP -Ti and l-PBFed Ti-41Nb alloys for 7 and 14 days.
Fig. 15. Quantitative results of extracellular matrix mineralization on CP-Ti and l-PBFed Ti-41Nb alloys after cultured for 7 and 14 days (??p < 0.01); (b) extracellular matrix mineralization positive areas of rBMSCs cultured on CP-Ti and l-PBFed Ti-41Nb alloys for 7 and 14 days.
[1] |
M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia, Prog. Mater. Sci. 54 (2009) 397-425.
DOI URL |
[2] |
M. Niinomi, M. Nakai, J. Hieda, Acta Biomater 8 (2012) 3888-3903.
DOI PMID |
[3] |
F.A. Shah, M. Trobos, P. Thomsen, A. Palmquist, Mater. Sci. Eng. C 62 (2016) 960-966.
DOI URL |
[4] |
A. Biesiekierski, J. Wang, M. Abdel-Hady Gepreel, C. Wen, Acta Biomater 8 (2012) 1661-1669.
DOI PMID |
[5] |
N. Mitsuo, Mater. Sci. Eng. A 243 (1998) 231-236.
DOI URL |
[6] |
L.Y. Chen, Y.W. Cui, L.C. Zhang, Metals (Basel) 10 (2020) 1-29.
DOI URL |
[7] |
G. Yamako, D. Janssen, S. Hanada, T. Anijs, K. Ochiai, K. Totoribe, E. Chosa, N. Verdonschot, J. Biomech. 63 (2017) 135-143.
DOI PMID |
[8] |
S.S. Sidhu, H. Singh, M.A.H. Gepreel, Mater. Sci. Eng. C 121 (2021) 111661.
DOI URL |
[9] |
Y. Okazaki, S. Rao, S. Asao, T. Tateishi, S.I. Katsuda, Y. Furuki, Mater. Trans. JIM 39 (1998) 1053-1062.
DOI URL |
[10] |
Y. Okazaki, S. Rao, T. Tateishi, Y. Ito, Mater. Sci. Eng. A 243 (1998) 250-256.
DOI URL |
[11] |
M. Zhubrak, T. Bar-David, J. Foot Ankle Surg. 53 (2014) 466-467.
DOI URL |
[12] |
J.M. Cordeiro, V.A.R. Barão, Mater. Sci. Eng. C 71 (2017) 1201-1215.
DOI URL |
[13] |
Y. Bai, Y. Deng, Y. Zheng, Y. Li, R. Zhang, Y. Lv, Q. Zhao, S. Wei, Mater. Sci. Eng. C 59 (2016) 565-576.
DOI URL |
[14] |
T. Ozaki, H. Matsumoto, S. Watanabe, S. Hanada, Mater. Trans. 45 (2004) 2776-2779.
DOI URL |
[15] |
L.L. Chang, Y.D. Wang, Y. Ren, Mater. Sci. Eng. A 651 (2016) 442-448.
DOI URL |
[16] |
E.M. Hildyard, L.D. Connor, L.R. Owen, D. Rugg, N. Martin, H.J. Stone, N.G. Jones, Acta Mater 199 (2020) 129-140.
DOI URL |
[17] |
A. Bahador, E. Hamzah, K. Kondoh, T.A. Abu Bakar, F. Yusof, H. Imai, S.N. Saud, M.K. Ibrahim, Mater. Des. 118 (2017) 152-162.
DOI URL |
[18] |
J. Wang, Y. Liu, C.D. Rabadia, S.X. Liang, T.B. Sercombe, L.C. Zhang, J. Mater. Sci. Technol. 61 (2021) 221-233.
DOI URL |
[19] |
Z. Li, H. Xu, A. Dong, J. Qiu, L. He, T. Zhang, D. Du, H. Xing, G. Zhu, D. Wang, B. Sun, Mater. Charact. 173 (2021) 110953.
DOI URL |
[20] |
S. Guo, J. Zhang, X. Cheng, X. Zhao, J. Alloy. Compd. 644 (2015) 411-415.
DOI URL |
[21] |
S. Guo, Q. Meng, X. Zhao, Q. Wei, H. Xu, Sci. Rep. 5 (2015) 14688.
DOI URL |
[22] |
H.Y. Kim, S. Miyazaki, Mater. Trans. 56 (2015) 625-634.
DOI URL |
[23] | P. Moghimian, T. Poirié, M. Habibnejad-Korayem, J.A. Zavala, J. Kroeger, F. Mar-ion, F. Larouche, Addit. Manuf. 43 (2021) 102017. |
[24] |
L. Yuan, S. Ding, C. Wen, Bioact. Mater. 4 (2019) 56-70.
DOI PMID |
[25] |
W.S.W. Harun, N.S. Manam, M.S.I.N. Kamariah, S. Sharif, A.H. Zulkifly, I. Ahmad, H. Miura, Powder Technol 331 (2018) 74-97.
DOI URL |
[26] | Q. Tao, Z. Wang, G. Chen, W. Cai, P. Cao, C. Zhang, W. Ding, X. Lu, T. Luo, X. Qu, M. Qin, Addit. Manuf. 34 (2020) 101198. |
[27] |
S. Xiang, H. Luan, J. Wu, K.F. Yao, J. Li, X. Liu, Y. Tian, W. Mao, H. Bai, G. Le, Q. Li, J. Alloy. Compd. 773 (2019) 387-392.
DOI |
[28] |
S. Huang, R.L. Narayan, J.H.K. Tan, S.L. Sing, W.Y. Yeong, Acta Mater 204 (2021) 116522.
DOI URL |
[29] |
M.H. Mosallanejad, B. Niroumand, A. Aversa, A. Saboori, J. Alloy. Compd. 872 (2021) 159567.
DOI URL |
[30] |
P. Qin, L.Y. Chen, C.H. Zhao, Y.J. Liu, C.D. Cao, H. Sun, L.C. Zhang, Corros. Sci. 189 (2021) 109609.
DOI URL |
[31] |
T. Nagase, T. Hori, M. Todai, S.H. Sun, T. Nakano, Mater. Des. 173 (2019) 107771.
DOI URL |
[32] |
D. Zhao, C. Han, J. Li, J. Liu, Q. Wei, Mater. Sci. Eng. C 111 (2020) 110784.
DOI URL |
[33] |
Q. Wang, C. Han, T. Choma, Q. Wei, C. Yan, B. Song, Y. Shi, Mater. Des. 126 (2017) 268-277.
DOI URL |
[34] |
J.C. Wang, Y.J. Liu, P. Qin, S.X. Liang, T.B. Sercombe, L.C. Zhang, Mater. Sci. Eng. A 760 (2019) 214-224.
DOI URL |
[35] |
M. Fischer, D. Joguet, G. Robin, L. Peltier, P. Laheurte, Mater. Sci. Eng. C 62 (2016) 852-859.
DOI URL |
[36] |
R. Ummethala, P.S. Karamched, S. Rathinavelu, N. Singh, A. Aggarwal, K. Sun, E. Ivanov, L. Kollo, I. Okulov, J. Eckert, K.G. Prashanth, Materialia 14 (2020) 100941.
DOI URL |
[37] |
J.P. Luo, J.F. Sun, Y.J. Huang, J.H. Zhang, D.P. Zhao, M. Yan, Y.D. Zhang, Mater. Sci. Eng. C 97 (2019) 275-284.
DOI URL |
[38] |
C. Schulze, M. Weinmann, C. Schweigel, O. Keßler, R. Bader, Materials (Basel) 11 (2018) 13-16.
DOI URL |
[39] |
J.C. Wang, Y.J. Liu, S.X. Liang, Y.S. Zhang, L.Q. Wang, T.B. Sercombe, L.C. Zhang, J. Mater. Sci. Technol. 105 (2022) 1-16.
DOI |
[40] |
L. Zhou, T. Yuan, R. Li, J. Tang, M. Wang, F. Mei, Mater. Sci. Eng. A 725 (2018) 329-340.
DOI URL |
[41] |
Y.J. Liu, Y.S. Zhang, L.C. Zhang, Materialia 6 (2019) 100299.
DOI URL |
[42] |
Z. Liu, D. Zhao, P. Wang, M. Yan, C. Yang, Z. Chen, J. Lu, Z. Lu, J. Mater. Sci. Technol. 100 (2021) 224-236.
DOI URL |
[43] |
C. Tan, Y. Chew, F. Weng, S. Sui, Z. Du, F.L. Ng, G. Bi, Virtual Phys. Prototyp. 16 (2021) 460-480.
DOI URL |
[44] | R. Duan, S. Li, B. Cai, W. Zhu, F. Ren, M.M. Attallah, Addit. Manuf. 37 (2021) 101708. |
[45] |
T. Ishimoto, K. Hagihara, K. Hisamoto, S.H. Sun, T. Nakano, Scr. Mater. 132 (2017) 34-38.
DOI URL |
[46] |
H. Xu, Z. Li, A. Dong, H. Xing, T. Zhang, D. Wang, G. Zhu, B. Sun, J. Alloy. Compd. 885 (2021) 161186.
DOI URL |
[47] |
Z. Chen, S. Chen, Z. Wei, L. Zhang, P. Wei, B. Lu, S. Zhang, Y. Xiang, Prog. Nat. Sci. Mater. Int. 28 (2018) 496-504.
DOI URL |
[48] |
H. Deng, W. Qiu, S. Cao, L. Chen, Z. Hu, Y. Wei, Z. Xia, L. Zhou, X. Cui, J. Tang, J. Alloy. Compd. 858 (2021) 158351.
DOI URL |
[49] |
Z.W. Chen, M.A.L. Phan, K. Darvish, J. Mater. Sci. 52 (2017) 7415-7427.
DOI URL |
[50] |
K.M. Bertsch, G. Meric de Bellefon, B. Kuehl, D.J. Thoma, Acta Mater 199 (2020) 19-33.
DOI URL |
[51] |
M.J. Lai, T. Li, D. Raabe, Acta Mater 151 (2018) 67-77.
DOI URL |
[52] |
M. Todai, T. Fukuda, T. Kakeshita, J. Alloy. Compd. 577 (2013) 431-434.
DOI URL |
[53] |
E.L. Pang, E.J. Pickering, S.I. Baik, D.N. Seidman, N.G. Jones, Acta Mater 153 (2018) 62-70.
DOI URL |
[54] | Z.H. Stachurski, Mater. Today 12 (2009) 44. |
[55] |
I. Toda-Caraballo, E.I. Galindo-Nava, P.E.J. Rivera-Díaz-Del-Castillo, Acta Mater 75 (2014) 287-296.
DOI URL |
[56] |
G.H. Zhao, X.Z. Liang, B. Kim, P.E.J. Rivera-Díaz-del-Castillo, Mater. Sci. Eng. A 756 (2019) 156-160.
DOI URL |
[57] | R. Madec, B. Devincre, L.P. Kubin, Phys. Rev. Lett. 89 (2002) 1-4. |
[58] |
R. Hermann, H. Hermann, M. Calin, B. Büchner, J. Eckert, Scr. Mater. 66 (2012) 198-201.
DOI URL |
[59] | H. Ikehata, N. Nagasako, T. Furuta, A. Fukumoto, K. Miwa, T. Saito, Phys. Rev. B-Condens. Matter Mater. Phys. 70 (2004) 1-8. |
[60] |
Z. Yan, D. Wang, X. He, W. Wang, H. Zhang, P. Dong, C. Li, Y. Li, J. Zhou, Z. Liu, L. Sun, Mater. Sci. Eng. A 723 (2018) 212-220.
DOI URL |
[61] | H. Xu, Z. Li, A. Dong, H. Xing, D. Du, L. He, H.P. Peng, G. Zhu, D. Wang, B. Sun, J. Alloy. Compd. 873 (2021) 1-6. |
[62] | J.F. Xiao, X.K. Shang, J.H. Hou, Y. Li, B.B. He, Int. J. Plast. 146 (2021) 1-24. |
[63] |
L. Wang, C. Fu, Y. Wu, R. Li, Y. Wang, X. Hui, Mater. Sci. Eng. A 763 (2019) 138147.
DOI URL |
[64] |
C. Xiong, P. Xue, B. Sun, Y. Li, Mater. Sci. Eng. A 688 (2017) 464-469.
DOI URL |
[65] |
S. Guo, Y. Shang, J. Zhang, Q. Meng, X. Cheng, X. Zhao, Mater. Sci. Eng. A 692 (2017) 81-89.
DOI URL |
[66] |
K.J. Qiu, Y. Liu, F.Y. Zhou, B.L. Wang, L. Li, Y.F. Zheng, Y.H. Liu, Acta Biomater 15 (2015) 254-265.
DOI PMID |
[67] |
X. Zhao, G. Wang, H. Zheng, Z. Lu, X. Zhong, X. Cheng, H. Zreiqat, ACS Appl. Mater. Interfaces 5 (2013) 8203-8209.
DOI URL |
[1] | H.Z. Lu, L.H. Liu, , X. Luo, C.H. Song, Z. Wang, J. Wang, Y.D. Su, Y.F. Ding, L.C. Zhang, Y.Y. Li. Simultaneous enhancement of mechanical and shape memory properties by heat-treatment homogenization of Ti2Ni precipitates in TiNi shape memory alloy fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 101(0): 205-216. |
[2] | Yue Wu, Xiaofan Zhang, Boyi Wang, Jingxuan Liang, Zipei Zhang, Jiawei Yang, Ximeng Dong, Shuqi Zheng, Huai-zhou Zhao. Decoupling of thermoelectric transport performance of Ag doped and Se alloyed tellurium induced by carrier mobility compensation [J]. J. Mater. Sci. Technol., 2022, 101(0): 71-79. |
[3] | Yingmei Tan, Ruirun Chen, Hongze Fang, Yangli Liu, Hongzhi Cui, Yanqing Su, Jingjie Guo, Hengzhi Fu. Enhanced strength and ductility in Ti46Al4Nb1Mo alloys via boron addition [J]. J. Mater. Sci. Technol., 2022, 102(0): 16-23. |
[4] | Jiantao Fan, Liming Fu, Yanle Sun, Feng Xu, Yi Ding, Mao Wen, Aidang Shan. Unveiling the precipitation behavior and mechanical properties of Co-free Ni47-xFe30Cr12Mn8AlxTi3 high-entropy alloys [J]. J. Mater. Sci. Technol., 2022, 118(0): 25-34. |
[5] | Jiahui Li, Yvonne Durandet, Xiaodong Huang, Guangyong Sun, Dong Ruan. Additively manufactured fiber-reinforced composites: A review of mechanical behavior and opportunities [J]. J. Mater. Sci. Technol., 2022, 119(0): 219-244. |
[6] | Lulu Guo, Lina Zhang, Joel Andersson, Olanrewaju Ojo. Additive manufacturing of 18% nickel maraging steels: Defect, structure and mechanical properties: A review [J]. J. Mater. Sci. Technol., 2022, 120(0): 227-252. |
[7] | Xiaodong Lin, Qunjia Peng, En-Hou Han, Wei Ke. Deformation and cracking behaviors of proton-irradiated 308L stainless steel weld metal strained in simulated PWR primary water [J]. J. Mater. Sci. Technol., 2022, 120(0): 36-52. |
[8] | Xu Liu, Lin Song, Andreas Stark, Uwe Lorenz, Zhanbing He, Junpin Lin, Florian Pyczak, Tiebang Zhang. Deformation and phase transformation behaviors of a high Nb-containing TiAl alloy compressed at intermediate temperatures [J]. J. Mater. Sci. Technol., 2022, 102(0): 89-96. |
[9] | Jingbo Gao, Yuting Jin, Yongqiang Fan, Dake Xu, Lei Meng, Cong Wang, Yuanping Yu, Deliang Zhang, Fuhui Wang. Fabricating antibacterial CoCrCuFeNi high-entropy alloy via selective laser melting and in-situ alloying [J]. J. Mater. Sci. Technol., 2022, 102(0): 159-165. |
[10] | Haoming Pang, Zhenbang Xu, Longjiang Shen, Jun Li, Junshuo Zhang, Zhiyuan Li, Shouhu Xuan, Xinglong Gong. The dynamic compressive properties of magnetorheological plastomers: enhanced magnetic-induced stresses by non-magnetic particles [J]. J. Mater. Sci. Technol., 2022, 102(0): 195-203. |
[11] | Z.W. Wang, J.F. Zhang, G.M. Xie, L.H. Wu, H. Zhang, P. Xue, D.R. Ni, B.L. Xiao, Z.Y. Ma. Evolution mechanisms of microstructure and mechanical properties in a friction stir welded ultrahigh-strength quenching and partitioning steel [J]. J. Mater. Sci. Technol., 2022, 102(0): 213-223. |
[12] | Dina Bayoumy, Kwangsik Kwak, Torben Boll, Stefan Dietrich, Daniel Schliephake, Jie Huang, Junlan Yi, Kazuki Takashima, Xinhua Wu, Yuman Zhu, Aijun Huang. Origin of non-uniform plasticity in a high-strength Al-Mn-Sc based alloy produced by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 103(0): 121-133. |
[13] | Gang Zhou, Yan Yang, Hanzhu Zhang, Faping Hu, Xueping Zhang, Chen Wen, Weidong Xie, Bin Jiang, Xiaodong Peng, Fusheng Pan. Microstructure and strengthening mechanism of hot-extruded ultralight Mg-Li-Al-Sn alloys with high strength [J]. J. Mater. Sci. Technol., 2022, 103(0): 186-196. |
[14] | Zs. Veres, A. Roósz, A. Rónaföldi, A. Sycheva, M. Svéda. The effect of melt flow induced by RMF on the meso- and micro-structure of unidirectionally solidified Al-7wt.% Si alloy Benchmark experiment under magnetic stirring [J]. J. Mater. Sci. Technol., 2022, 103(0): 197-208. |
[15] | Lei Li, Huanzheng Jiao, Congfu Liu, Lin Yang, Yusong Suo, Ruixue Zhang, Tie Liu, Jianzhong Cui. Microstructures, mechanical properties and in vitro corrosion behavior of biodegradable Zn alloys microalloyed with Al, Mn, Cu, Ag and Li elements [J]. J. Mater. Sci. Technol., 2022, 103(0): 244-260. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||