J. Mater. Sci. Technol. ›› 2022, Vol. 124: 182-192.DOI: 10.1016/j.jmst.2022.03.004
• Research Article • Previous Articles Next Articles
Zhenjiang Lia, Hui Lina, Yuxin Xiea, Laibin Zhaoa, Yuying Guoa, Tingting Chenga, Hailong Linga, Alan Mengb, Shaoxiang Lic, Meng Zhanga,*()
Received:
2022-02-08
Revised:
2022-03-09
Accepted:
2022-03-11
Published:
2022-10-10
Online:
2022-04-06
Contact:
Meng Zhang
About author:
∗E-mail address:. mengzhang@qust.edu.cn (M. Zhang)Zhenjiang Li, Hui Lin, Yuxin Xie, Laibin Zhao, Yuying Guo, Tingting Cheng, Hailong Ling, Alan Meng, Shaoxiang Li, Meng Zhang. Monodispersed Co@C nanoparticles anchored on reclaimed carbon black toward high-performance electromagnetic wave absorption[J]. J. Mater. Sci. Technol., 2022, 124: 182-192.
Fig. 3. (a-d) SEM images, (e-i) TEM images, and (j, k) HRTEM images of CB at different magnifications. The typical SAED pattern is inserted in Fig. 3(f).
Fig. 8. RL values of four paraffin-based composites (a) CB, (b) CB/Co@C-1#, (c) CB/Co@C-2#, and (d) CB/Co@C-3# at 2-18 GHz. (e-h) 2D color-mapping of RL for CB and CB/Co@C. (i) Maximum RL and EAB for CB/Co@C-2# with different sample thicknesses.
Sample | Filler content (%) | Minimum RL | RL | Refs. | ||
---|---|---|---|---|---|---|
Empty Cell | Empty Cell | RLmin (dB) | dm (mm) | EAB (GHz) | dm | Empty Cell |
Co@C nanotubes | 30 | -48 | 2.0 | 5.2 | 1.8 | [ |
Porous Co/C | 10 | -34.2 | 2.4 | 5.0 | 1.8 | [ |
Co@C@NPC | 10 | -57.2 | 3 | 5.7 | 3 | [ |
N-doped Co@C | 40 | -47.6 | 2.7 | 4.4 | 2.7 | [ |
Co/C-500 | 60 | -35.3 | 4.0 | 5.8 | 4.0 | [ |
Porous carbon/Co | 30 | -40 | 5.0 | 2.5 | 1.8 | [ |
Co@C nanofiber | 50 | -40 | 2.4 | 2.5 | 2.4 | [ |
FeCo@C | 50 | -67.8 | 1.75 | 5.3 | 2.0 | [ |
Co/C | 20 | -56 | 3.5 | 3.6 | 2.3 | [ |
Co/CNTs | 30 | -35 | 2.5 | 4.7 | 2.5 | [ |
CB/Co@C-2# | 30 | -53.989 | 2.28 | 4.08 | 2.28 | This work |
CB/Co@C-3# | 30 | -28.483 | 2.28 | 6 | 2.73 | This work |
Table 1. RLmin and EABmax of the corresponding thickness of Co@C composites reported recently.
Sample | Filler content (%) | Minimum RL | RL | Refs. | ||
---|---|---|---|---|---|---|
Empty Cell | Empty Cell | RLmin (dB) | dm (mm) | EAB (GHz) | dm | Empty Cell |
Co@C nanotubes | 30 | -48 | 2.0 | 5.2 | 1.8 | [ |
Porous Co/C | 10 | -34.2 | 2.4 | 5.0 | 1.8 | [ |
Co@C@NPC | 10 | -57.2 | 3 | 5.7 | 3 | [ |
N-doped Co@C | 40 | -47.6 | 2.7 | 4.4 | 2.7 | [ |
Co/C-500 | 60 | -35.3 | 4.0 | 5.8 | 4.0 | [ |
Porous carbon/Co | 30 | -40 | 5.0 | 2.5 | 1.8 | [ |
Co@C nanofiber | 50 | -40 | 2.4 | 2.5 | 2.4 | [ |
FeCo@C | 50 | -67.8 | 1.75 | 5.3 | 2.0 | [ |
Co/C | 20 | -56 | 3.5 | 3.6 | 2.3 | [ |
Co/CNTs | 30 | -35 | 2.5 | 4.7 | 2.5 | [ |
CB/Co@C-2# | 30 | -53.989 | 2.28 | 4.08 | 2.28 | This work |
CB/Co@C-3# | 30 | -28.483 | 2.28 | 6 | 2.73 | This work |
Fig. 9. (a) Real and (b) imaginary parts for complex permittivity. (c) Real and (d) imaginary parts for complex permeability. (e) tanδε and (f) tanδμ of CB and CB/Co@C nanocomposites at 2.0-18.0 GHz. (g) C0 cure, (h) attenuation constant, and (i) impedance matching of the CB and CB/Co@C nanocomposites.
[1] | Z.L. Ma, X.L. Xiang, L. Shao, Y.L. Zhang, J.W. Gu, Angew. Chem. Int. Ed. 61 (2022) e202200705. |
[2] |
Y.X. Han, K.P. Ruan, J.W. Gu, Nano Res. 15 (2022) 4747-4755.
DOI URL |
[3] |
Q. Zhang, Q.J. Liang, Z. Zhang, Z. Kang, Q.L. Liao, Y. Ding, M.Y. Ma, F.F. Gao, X. Zhao, Y. Zhang, Adv. Funct. Mater. 28 (2018) 1703801.
DOI URL |
[4] |
Z.C. Lou, Q.Y. Wang, X.D. Zhou, U.I. Kara, R.S. Mamtani, H.L. Lv, M. Zhang, Z.H. Yang, Y.J. Li, C.X. Wang, S. Adera, X.G. Wang, J. Mater. Sci. Technol. 113 (2022) 33-39.
DOI URL |
[5] |
H.L. Lv, Z.H. Yang, B. Liu, G.L. Wu, Z.C. Lou, B. Fei, R.B. Wu, Nat. Commun. 12 (2021) 834.
DOI URL |
[6] | K. Nath, S. Ghosh, S.K. Ghosh, P. Das, N.C. Das, J. Appl. Polym. Sci. 138 (2021) e50514. |
[7] |
A. Katheria, J. Nayak, N.C. Das, Mater. Adv. 3 (2022) 2670-2691.
DOI URL |
[8] | R. Ravindren, S. Mondal, K. Nath, N.C. Das, Compos. Part A 118 (2018) 78-89. |
[9] |
P. Bhawal, S. Ganguly, T.K. Das, S. Mondal, N.C. Das, Polym. Adv. Technol. 29 (2018) 98-110.
DOI URL |
[10] |
Q.H. Liu, Q. Cao, H. Bi, C.Y. Liang, K.P. Yuan, W. She, Y.J. Yang, R.C. Che, Adv. Mater. 28 (2016) 486-490.
DOI URL |
[11] |
Y.L. Zhang, Y. Yan, H. Qiu, Z.L. Ma, K.P. Ruan, J.W. Gu, J. Mater. Sci. Technol. 103 (2022) 42-49.
DOI |
[12] |
L. Wang, Z.L. Ma, Y.L. Zhang, L.X. Chen, D.P. Cao, J.W. Gu, SusMat 1 (2021) 413-431.
DOI URL |
[13] |
H.Q. Zhao, Y. Cheng, H.L. Lv, G.B. Ji, Y.W. Du, Carbon 142 (2019) 245-253.
DOI URL |
[14] |
J.J. Wang, S.L. Yu, Q.Q. Wu, Y. Li, F.Y. Li, X. Zhou, Y.H. Chen, B.Z. Li, P.B. Liu, J. Mater. Sci. Technol. 115 (2022) 71-80.
DOI URL |
[15] | Z.C. Lou, Q.Y. Wang, U.I. Kara, R.S. Mamtani, X.D. Zhou, H.Y. Bian, Z.H. Yang, Y.J. Li, H.L. Lv, S. Adera, X.G. Wang, Nano Micro Lett. 14 (2022) 11. |
[16] |
H.L. Lv, Z.H. Yang, S.J.H. Ong, C. Wei, H.B. Liao, S.B. Xi, Y.H. Du, G.B. Ji, Z.C.J. Xu, Adv. Funct. Mater. 29 (2019) 1900163.
DOI URL |
[17] |
H.L. Lv, Z.H. Yang, H.B. Xu, L.Y. Wang, R.B. Wu, Adv. Funct. Mater. 30 (2020) 1907251.
DOI URL |
[18] |
M. Zhang, H.L. Ling, S.Q. Ding, Y.X. Xie, T.T. Cheng, L.B. Zhao, T. Wang, H.G. Bian, H. Lin, Z.J. Li, A.L. Meng, Carbon 174 (2021) 248-259.
DOI URL |
[19] | H.Q. Zhao, Y. Cheng, W. Liu, L.J. Yang, B.S. Zhang, L.Y.P. Wang, G.B. Ji, Z.C.J. Xu, Nano Micro Lett. 11 (2019) 81-97. |
[20] |
Z.J. Li, H. Lin, S.Q. Ding, H.L. Ling, T. Wang, Z.Q. Miao, M. Zhang, A.L. Meng, Q.D. Li, Carbon 167 (2020) 148-159.
DOI URL |
[21] |
P.B. Liu, S. Gao, G.Z. Zhang, Y. Huang, W.B. You, R.C. Che, Adv. Funct. Mater. 31 (2021) 2102812.
DOI URL |
[22] |
S. Gao, G.Z. Zhang, Y. Wang, X.P. Han, Y. Huang, P.B. Liu, J. Mater. Sci. Technol. 88 (2021) 56-65.
DOI URL |
[23] |
R.W. Shu, X.H. Li, K.H. Tian, J.J. Shi, Compos. Part B Eng. 228 (2022) 109423.
DOI URL |
[24] |
R.W. Shu, N.N. Li, X.H. Li, J.J. Sun, J. Colloid Interfaces Sci. 606 (2022) 1918-1927.
DOI URL |
[25] |
R.W. Shu, Y. Wu, X.H. Li, N.N. Li, J.J. Shi, J. Colloid Interfaces Sci. 613 (2022) 477-487.
DOI URL |
[26] |
Y.A. Zhang, X.M. Zhang, B. Quan, G.B. Ji, X.H. Liang, W. Liu, Y.W. Du, Nanotechnology 28 (2017) 115704.
DOI URL |
[27] |
K.F. Wang, Y.J. Chen, R. Tian, H. Li, Y. Zhou, H.N. Duan, H.Z. Liu, ACS Appl. Mater. Interfaces 10 (2018) 11333-11342.
DOI URL |
[28] |
H.Y. Wang, Y.L. Zhang, Q.Y. Wang, C.W. Jia, P. Cai, G. Chen, C.J. Dong, H.T. Guan, RSC Adv. 9 (2019) 9126-9135.
DOI URL |
[29] |
S. Khodabakhshi, P.F. Fulvio, E. Andreoli, Carbon 162 (2020) 604-649.
DOI URL |
[30] |
J. Yan, T. Wei, B. Shao, F.Q. Ma, Z.J. Fan, M.L. Zhang, C. Zheng, Y.C. Shang, W.Z. Qian, F. Wei, Carbon 48 (2010) 1731-1737.
DOI URL |
[31] |
A. Asthana, T. Maitra, R. Buchel, M.K. Tiwari, D. Poulikakos, ACS Appl. Mater. Interfaces 6 (2014) 8859-8867.
DOI URL |
[32] |
S. Singh, P.K. Bairagi, N. Verma, Electrochim. Acta 264 (2018) 119-127.
DOI URL |
[33] |
W. Sun, X.D. Zhang, H.R. Jia, Y.X. Zhu, Y.X. Guo, G. Gao, Y.H. Li, F.G. Wu, Small 15 (2019) 1804575.
DOI URL |
[34] |
D. Potphode, C.S. Sharma, J. Energy Storage 27 (2020) 101114.
DOI URL |
[35] |
H.P. Liu, T. Ye, C.D. Mao, Angew. Chem. Int. Ed. 46 (2007) 6473-6475.
DOI URL |
[36] |
J.C. Hill, A.T. Landers, J.A. Switzer, Nat. Mater. 14 (2015) 1150-1155.
DOI URL |
[37] |
M. Du, Q.W. Liu, C.J. Huang, X.Q. Qiu, RSC Adv. 7 (2017) 35451-35459.
DOI URL |
[38] |
F. Zhang, W. Cui, B.B. W, B.H. Xu, X.H. Liu, X.H. Liu, Z.R. Jia, G.L. Wu, Compos. Part B Eng. 204 (2020) 108491.
DOI URL |
[39] |
G.L. Wu, Y.H. Cheng, Y.Y. Ren, Y.Q. Wang, Z.D. Wang, H.J. Wu, J. Alloy. Compd. 652 (2015) 346-350.
DOI URL |
[40] |
B. Wu, H.M. Tuncer, A. Katsounaros, W.P. Wu, M.T. Cole, K. Ying, L.H. Zhang, W.I. Milne, Y. Hao, Carbon 77 (2014) 814-822.
DOI URL |
[41] |
M. Zhang, J.H. Zhang, H. Lin, T. Wang, S.Q. Ding, Z.J. Li, J.H. Wang, A.L. Meng, Q.D. Li, Y.S. Lin, Compos. Part B Eng. 190 (2020) 107902.
DOI URL |
[42] |
H. Wu, L.D. Wang, H.J. Wu, Appl. Surf. Sci. 290 (2014) 388-397.
DOI URL |
[43] |
H.L. Lu, W.J. Dai, M.B. Zheng, N.W. Li, G.B. Ji, J.M. Cao, J. Power Sources 209 (2012) 243-250.
DOI URL |
[44] |
H.Q. Yang, B.D. Wang, S.Q. Kou, G.L. Lu, Z.N. Liu, Chem. Eng. J. 425 (2021) 131589.
DOI URL |
[45] |
F.P. Pan, Z.Y. Cao, Q.P. Zhao, H.Y. Liang, J.Y. Zhang, J. Power Sources 272 (2014) 8-15.
DOI URL |
[46] |
T.I.T. Okpalugo, P. Papakonstantinou, H. Murphy, J. McLaughlin, N.M.D. Brown, Carbon 43 (2005) 153-161.
DOI URL |
[47] |
Y. Yang, S.Z. Zhang, S.W. Wang, K.L. Zhang, H.Z. Wang, J. Huang, S.B. Deng, B. Wang, Y.J. Wang, G. Yu, Environ. Sci. Technol. 49 (2015) 4473-4480.
DOI PMID |
[48] |
L.Z. Liu, J.X. Li, H.B. Zhang, L. Li, P. Zhou, X.L. Meng, M.M. Guo, J.P. Jia, T.H. Sun, J. Hazard. Mater. 362 (2018) 178-186.
DOI URL |
[49] |
Z.L. Chen, S.H. Chen, Y.H. Li, X.L. Si, J. Huang, S. Massey, G.L. Chen, Mater. Res. Bull. 57 (2014) 170-176.
DOI URL |
[50] |
Y.Q. Fan, Y.H. Li, Y.L. Yao, Y. Sun, B.H. Tong, J. Zhan, Appl. Surf. Sci. 534 (2020) 147510.
DOI URL |
[51] |
Z.C. Wu, Z.Q. Yang, K. Pei, X. Qian, C. Jin, R.C. Che, Nanoscale 12 (2020) 10149-10157.
DOI URL |
[52] |
H.X. Zhang, Z.R. Jia, B.B. Wang, X.M. Wu, T. Sun, X.H. Liu, L. Bi, G.L. Wu, Chem. Eng. J. 421 (2021) 129960.
DOI URL |
[53] |
G.Q. Wang, Y.F. Chang, L.F. Wang, C. Liu, Adv. Powder Technol. 23 (2012) 861-865.
DOI URL |
[54] |
B.A. Zhao, L.Y. Liang, J.S. Deng, Z.Y. Bai, J.W. Liu, X.Q. Guo, K. Gao, W.H. Guo, R. Zhang, CrystEngComm 19 (2017) 6579-6587.
DOI URL |
[55] |
H.Q. Zhao, Y. Cheng, Z. Zhang, J.W. Yu, J. Zheng, M. Zhou, L. Zhou, B.S. Zhang, G.B. Ji, Compos. Part B Eng. 196 (2020) 108119.
DOI URL |
[56] |
P.T. Xie, Y. Liu, M. Feng, M. Niu, C.Z. Liu, N.N. Wu, K.Y. Sui, R.R. Patil, D. Pan, Z.H. Guo, R.H. Fan, Adv. Compos. Hybrid Mater. 4 (2021) 173-185.
DOI URL |
[57] |
Y. Wang, X.C. Di, Z. Lu, X.M. Wu, J. Colloid Interfaces Sci. 589 (2021) 462-471.
DOI URL |
[58] |
J.Q. Wang, Q. Li, J.Q. Ren, A.B. Zhang, Q.Y. Zhang, B.L. Zhang, Carbon 181 (2021) 28-39.
DOI URL |
[59] |
Y.Y. Lü, Y.T. Wang, H.L. Li, Y. Lin, Z.Y. Jiang, Z.X. Xie, Q. Kuang, L.S. Zheng, ACS Appl. Mater. Interfaces 7 (2015) 13604-13611.
DOI URL |
[60] |
Q.L. Liu, D. Zhang, T.X. Fan, Appl. Phys. Lett. 93 (2008) 013110.
DOI URL |
[61] |
J.M. Zhang, P. Wang, Y.W. Chen, G.W. Wang, D. Wang, L. Qiao, T. Wang, F.S. Li, J. Electron. Mater. 47 (2018) 4703-4709.
DOI URL |
[62] |
F.Y. Wang, N. Wang, X.J. Han, D.W. Liu, Y.H. Wang, L. Cui, P. Xu, Y.C. Du, Carbon 145 (2019) 701-711.
DOI URL |
[63] |
H.L. Xu, X.W. Yin, X.M. Fan, Z.M. Tang, Z.X. Hou, M.H. Li, X.L. Li, L.T. Zhang, L.F. Cheng, Carbon 148 (2019) 421-429.
DOI URL |
[64] |
X.Y. Xiao, W.J. Zhu, Z. Tan, W. Tian, Y. Guo, H. Wang, J.N. Fu, X. Jian, Compos. Part B Eng. 152 (2018) 316-323.
DOI URL |
[65] |
J. Zhan, Y.L. Yao, C.F. Zhang, C.J. Li, J. Alloy. Compd. 585 (2014) 240-244.
DOI URL |
[66] |
R.B. Wu, K. Zhou, Z.H. Yang, X.K. Qian, J. Wei, L. Liu, Y.Z. Huang, L.B. Kong, L.Y. Wang, CrystEngComm 15 (2013) 570-576.
DOI URL |
[67] |
J. Li, P. Miao, K.J. Chen, J.W. Cao, J. Liang, Y.S. Tang, J. Kong, Compos. Part B Eng. 182 (2020) 107613.
DOI URL |
[68] |
Y.H. Zou, H.B. Liu, L. Yang, Z.Z. Chen, J. Magn. Magn. Mater. 302 (2006) 343-347.
DOI URL |
[69] |
X. Wang, F. Pan, Z. Xiang, Q.W. Zeng, K. Pei, R.C. Che, W. Lu, Carbon 157 (2020) 130-139.
DOI URL |
[70] |
Q.Q. Li, Y.H. Zhao, X.H. Li, L. Wang, X. Li, J. Zhang, R.C. Che, Small 16 (2020) 2003905.
DOI URL |
[71] |
X.X. Sun, Z. Wang, S.S. Wang, Y.H. Ning, M.L. Yang, S. Yang, L. Zhou, Q. He, Y.B. Li, Chem. Eng. J. 422 (2021) 130142.
DOI URL |
[72] |
Y.L. Duan, Z.H. Xiao, X.Y. Yan, Z.F. Gao, Y.S. Tang, L.Q. Hou, Q. Li, G.Q. Ning, Y.F. Li, ACS Appl. Mater. Interfaces 10 (2018) 40078-40087.
DOI URL |
[73] |
R.W. Shu, J.B. Zhang, Y. Wu, Z.L. Wan, X.H. Li, Nanoscale 13 (2021) 4485-4495.
DOI URL |
[74] |
R.W. Shu, Y. Wu, X.H. Li, J.B. Zhang, Z.L. Wan, N.N. Li, Compos. Part A 147 (2021) 106451.
DOI URL |
[75] |
R.W. Shu, Y. Wu, W.J. Li, J.B. Zhang, Y. Liu, J.J. Shi, M.D. Zheng, Compos. Sci. Technol. 196 (2020) 108240.
DOI URL |
[1] | Bin Li, Fenglong Wang, Kejun Wang, Jing Qiao, Dongmei Xu, Yunfei Yang, Xue Zhang, Longfei Lyu, Wei Liu, Jiurong Liu. Metal sulfides based composites as promising efficient microwave absorption materials: A review [J]. J. Mater. Sci. Technol., 2022, 104(0): 244-268. |
[2] | Xuejiao Zhou, Junwu Wen, Zhenni Wang, Xiaohua Ma, Hongjing Wu. Broadband high-performance microwave absorption of the single-layer Ti3C2Tx Mxene [J]. J. Mater. Sci. Technol., 2022, 115(0): 148-155. |
[3] | Jijun Wang, Songlin Yu, Qingqing Wu, Yan Li, Fangyuan Li, Xiao Zhou, Yuhua Chen, Bingzhen Li, Panbo Liu. Heterogeneous junctions of magnetic Ni core@binary dielectric shells toward high-efficiency microwave attenuation [J]. J. Mater. Sci. Technol., 2022, 115(0): 71-80. |
[4] | Guohao Dai, Ruixiang Deng, Xiao You, Tao Zhang, Yun Yu, Lixin Song. Entropy-driven phase regulation of high-entropy transition metal oxide and its enhanced high-temperature microwave absorption by in-situ dual phases [J]. J. Mater. Sci. Technol., 2022, 116(0): 11-21. |
[5] | Fuxi Peng, Mingfeng Dai, Zhenyu Wang, Yifan Guo, Zuowan Zhou. Progress in graphene-based magnetic hybrids towards highly efficiency for microwave absorption [J]. J. Mater. Sci. Technol., 2022, 106(0): 147-161. |
[6] | Biao Zhao, Yang Li, Qingwen Zeng, Bingbing Fan, Lei Wang, Rui Zhang, Renchao Che. Growth of magnetic metals on carbon microspheres with synergetic dissipation abilities to broaden microwave absorption [J]. J. Mater. Sci. Technol., 2022, 107(0): 100-110. |
[7] | Yue-Yi Wang, , Wen-Jin Sun, Kun Dai, Ding-Xiang Yan, Zhong-Ming Li. Highly enhanced microwave absorption for carbon nanotube/barium ferrite composite with ultra-low carbon nanotube loading [J]. J. Mater. Sci. Technol., 2022, 102(0): 115-122. |
[8] | Yawei Zhang, Shuangshuang Li, Xinwei Tang, Wei Fan, Qianqian Lan, Le Li, Piming Ma, Weifu Dong, Zicheng Wang, Tianxi Liu. Ultralight and ordered lamellar polyimide-based graphene foams with efficient broadband electromagnetic absorption [J]. J. Mater. Sci. Technol., 2022, 102(0): 97-104. |
[9] | Yameng Jiao, Qiang Song, Xuemin Yin, Liyuan Han, Wei Li, Hejun Li. Grow defect-rich bamboo-like carbon nanotubes on carbon black for enhanced microwave absorption properties in X band [J]. J. Mater. Sci. Technol., 2022, 119(0): 200-208. |
[10] | Wei Luo, Yi Liu, Chuangye Wang, Dan Zhao, Xiaoyan Yuan, Jianfeng Zhu, Lei Wang, Shouwu Guo. Sacrificial template synthesis of (V0.8Ti0.1Cr0.1)2AlC and carbon fiber@(V0.8Ti0.1Cr0.1)2AlC microrods for efficient microwave absorption [J]. J. Mater. Sci. Technol., 2022, 111(0): 236-244. |
[11] | Jianping Yang, Linwen Jiang, Zhonghao Liu, Zhuo Tang, Anhua Wu. Multifunctional interstitial-carbon-doped FeCoNiCu high entropy alloys with excellent electromagnetic-wave absorption performance [J]. J. Mater. Sci. Technol., 2022, 113(0): 61-70. |
[12] | Zhuguang Nie, Yang Feng, Qing Zhu, YingXia Li, ping Luo, Lan Ma, Jie Su, Xingman Hu, Rumin Wang, Shuhua Qi. Layered-structure N-doped expanded-graphite/boron nitride composites towards high performance of microwave absorption [J]. J. Mater. Sci. Technol., 2022, 113(0): 71-81. |
[13] | Fei Wu, Lingyun Wan, Ting Wang, Muhammad Rizwan Tariq, Tariq Shah, Pei Liu, Qiuyu Zhang, Baoliang Zhang. Construction of binary assembled MOF-derived nanocages with dual-band microwave absorbing properties [J]. J. Mater. Sci. Technol., 2022, 117(0): 36-48. |
[14] | Tong Gao, Zhengyu Zhang, Yixing Li, Yujuan Song, Huawei Rong, Xuefeng Zhang. Solid-state reaction induced defects in multi-walled carbon nanotubes for improving microwave absorption properties [J]. J. Mater. Sci. Technol., 2022, 108(0): 37-45. |
[15] | Xiankai Fu, Bo Yang, Wanqi Chen, Zongbin Li, Haile Yan, Xiang Zhao, Liang Zuo. Electromagnetic wave absorption performance of Ti2O3 and vacancy enhancement effective bandwidth [J]. J. Mater. Sci. Technol., 2021, 76(0): 166-173. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||