J. Mater. Sci. Technol. ›› 2022, Vol. 122: 10-19.DOI: 10.1016/j.jmst.2021.12.064
• Research Article • Previous Articles Next Articles
Zexin Liua, Xiangmei Liub,*(), Zhenduo Cuia, Yufeng Zhengc, Zhaoyang Lia,**(
), Yanqin Lianga, Xubo Yuana,**(
), Shengli Zhua, Shuilin Wua,c,**(
)
Received:
2021-12-03
Revised:
2021-12-21
Accepted:
2021-12-27
Published:
2022-09-20
Online:
2022-03-20
Contact:
Xiangmei Liu,Zhaoyang Li,Xubo Yuan,Shuilin Wu
About author:
shuilin.wu@gmail.com (S. Wu).Zexin Liu, Xiangmei Liu, Zhenduo Cui, Yufeng Zheng, Zhaoyang Li, Yanqin Liang, Xubo Yuan, Shengli Zhu, Shuilin Wu. Surface photodynamic ion sterilization of ITO-Cu2O/ZnO preventing touch infection[J]. J. Mater. Sci. Technol., 2022, 122: 10-19.
Antibacterial methods | Disadvantages of being used to preventing touch infection |
---|---|
Chemical disinfectants | 1 Needing to be sprayed regularly 2 Causing environmental pollutions |
UV disinfection | 1 Cause adverse damage to human health |
Photothermal sterilization | 1 Overheating cause certain damage to some specific equipment 2 Not suitable for people to continue to use due to overheating |
Physical puncture | 1 Depending on the motility of bacteria and the nature of nanoneedle itself 2 The nanoneedle will break when the finger keeps touching |
Ultrasound and microwave excited bacteria-killing | 1 Requiring special equipment 2 High-cost |
Table 1. Shortcoming of other antibacterial methods for preventing touch infection.
Antibacterial methods | Disadvantages of being used to preventing touch infection |
---|---|
Chemical disinfectants | 1 Needing to be sprayed regularly 2 Causing environmental pollutions |
UV disinfection | 1 Cause adverse damage to human health |
Photothermal sterilization | 1 Overheating cause certain damage to some specific equipment 2 Not suitable for people to continue to use due to overheating |
Physical puncture | 1 Depending on the motility of bacteria and the nature of nanoneedle itself 2 The nanoneedle will break when the finger keeps touching |
Ultrasound and microwave excited bacteria-killing | 1 Requiring special equipment 2 High-cost |
Fig. 1. (A) Schematic illustration of the fabrication process of the Cu2O/ZnO heterojunction; (B) Photographs of each group of samples (Scale bar, 0.5 cm); (C) Photograph of the ITO-Cu2O/ZnO sample placed on the surface of the phone (Scale bar, 0.5 cm); (D) Light transmittance of each group of samples. The error bar means ± standard deviations (n = 3 independent samples): ****p < 0.0001.
Fig. 2. (A) Low magnification SEM images of ITO-Cu2O/ZnO (Scale bar, 50 μm); (B, C) High magnification SEM images of ITO-Cu2O (B), ITO-Cu2O/ZnO (C) (Scale bar, 2 μm); (D) TEM images of Cu2O/ZnO (Scale bar, 1 μm); (E) HRTEM images of Cu2O/ZnO (Scale bar, 2 nm); (F) SAED pattern of Cu2O/ZnO; (G) EDS detection of Cu2O/ZnO; (H) Elemental mapping of Cu2O/ZnO by TEM (Scale bar, 1 μm).
Fig. 3. XPS spectra of as synthesized samples. (A) XPS survey scan; (B) High-resolution of Cu 2p for ITO-Cu2O; (C) High-resolution of Zn 2p for ITO-ZnO and ITO-Cu2O/ZnO; (D)-(F) High-solution of O 1s for ITO-Cu2O (D), ITO-ZnO (E), ITO-Cu2O/ZnO (F).
Fig. 4. (A) UV-vis absorption spectra of ITO, ITO-Cu2O, ITO-ZnO, and ITO-Cu2O/ZnO; (B) Plots of the (αhν)2 versus photon energy (hν) for ITO-Cu2O, ITO-ZnO and ITO-Cu2O/ZnO.
Fig. 5. (A) Transient photocurrent responses, (B) EIS tests, (C) ESR tests of ITO-Cu2O, ITO-ZnO and ITO-Cu2O/ZnO; (D) Schematic diagram of the mechanism of enhanced photocatalytic activity.
Fig. 6. (A) Spread plates and (B) corresponding strain counts of ITO, ITO-Cu2O, ITO-ZnO, ITO-Cu2O/ZnO in the absence and presence of solar light. The error bar means ± standard deviations (n = 3 independent samples): **p < 0.01, ***p < 0.001, ****p < 0.0001.
Fig. 7. SEM images for S. aureus incubated with different samples of ITO, ITO-Cu2O, ITO-ZnO and ITO-Cu2O/ZnO treated with or without light irradiation (Scale bar, 1 μm).
[1] | T.A.P. da Fonseca, R. Pessôa, A.C. Felix, S.S. Sanabani, Int. J. Environ. Res. Public Health 13 (2016) 152. |
[2] | D. Vargas-Robles, C. Gonzalez-Cedillo, A.M. Hernandez, L.D. Alcaraz, M. Peim- bert, Plos One 15 (2020) e0237272. |
[3] | P. Rahi, R. Kurli, A.N. Pansare, M. Khairnar, S. Jagtap, N.B. Patel, S.G. Dastager, P.A. Lawson, Y.S. Shouche, Int. J. Syst. Evol. Microbiol. 68 (2018) 1052-1058. |
[4] |
K. Hayashi, I. Mori, K. Takeda, Y. Okada, A. Hayase, T. Mori, Y. Nishioka, K. Man-abe, Skin Res. Technol. 27 (2021) 1135-1144.
DOI URL PMID |
[5] |
D. Xu, T.Y. Wang, Z.Y. Lu, Y.Q. Wang, B. Sun, S.D. Wang, Q. Fu, Z.G. Bi, S. Geng, J. Mater. Sci. Technol. 90 (2021) 133-142.
DOI URL |
[6] | N. Fierer, M. Hamady, C.L. Lauber, R. Knight,Proc. Natl. Acad. Sci. USA. 105 (2008) 17994-17999. |
[7] | P.N. Zivich MPH, A.S. Gancz, A.E. Aiello, Am. J. Infect. Control 46 (2018) 448-455. |
[8] |
H. Choi, P. Chatterjee, E. Lichtfouse, J.A. Martel, M. Hwang, C. Jinadatha, V. K. Sharma, Environ. Chem. Lett. 19 (2021) 1945-1951.
DOI URL |
[9] | J.M. Boyce, Antimicrob. Resist. Infect. Control 5 (2016) 10. |
[10] |
D.L. Han, Y. Li, X.M. Liu, K.W.K. Yeung, Y.F. Zheng, Z.D. Cui, Y.Q. Liang, Z.Y. Li, S. L. Zhu, X.B. Wang, S.L. Wu, J. Mater. Sci. Technol. 62 (2021) 83-95.
DOI URL |
[11] |
Q.Y. Zheng, X.M. Liu, Y.F. Zheng, K.W.K. Yeung, Z.D. Cui, Y.Q. Liang, Z.Y. Li, S. L. Zhu, X.B. Wang, S.L. Wu, Chem. Soc. Rev. 50 (2021) 5086-5125.
DOI URL |
[12] |
J. Song, J. Li, X.R. Bai, L. Kang, L.Y. Ma, N.Q. Zhao, S.L. Wu, Y. Xue, J.J. Li, X.J. Ji, J.W. Sha, J. Mater. Sci. Technol. 87 (2021) 83-94.
DOI URL |
[13] |
Y. Zou, Y.X. Zhang, Q. Yu, H. Chen, J. Mater. Sci. Technol. 70 (2021) 24-38.
DOI URL |
[14] | X.Y. Kong, X.M. Liu, Y.F. Zheng, P.K. Chu, Y. Zhang, S.L. Wu, Mater. Sci. Eng. R Rep. 145 (2021) 100610. |
[15] |
R. Lv, Y.Q. Liang, Z.Y. Li, S.L. Zhu, Z.D. Cui, S.L. Wu, Rare Met. 41 (2022) 639-649.
DOI URL |
[16] |
Q. Wu, X.M. Liu, B. Li, L. Tan, Y. Han, Z.Y. Li, Y.Q. Liang, Z.D. Cui, S.L. Zhu, S. L. Wu, Y.F. Zheng, J. Mater. Sci. Technol. 67 (2021) 70-79.
DOI URL |
[17] | B.Y. Li, I.S. Kim, S.H. Dai, M.N. Sarwar, X.H. Yang, Colloid Interface Sci. Commun. 45 (2021) 100543. |
[18] | S.T. Wang, Y. Fang, Z.Q. Zhang, Q. Jin, J. Ji, Colloid Interface Sci. Commun. 40 (2021) 100354. |
[19] | T. Wei, Q. Yu, H. Chen, Adv. Healthc. Mater. 8 (2019) 1801381. |
[20] |
Y.M. Xiang, J. Li, X.M. Liu, Z.D. Cui, X.J. Yang, K.W.K. Yeung, H.B. Pan, S.L. Wu, Mater. Sci. Eng. C Mater. Biol. Appl. 79 (2017) 629-637.
DOI URL |
[21] | K. Su, L. Tan, X.M. Liu, Z.D. Cui, Y.F. Zheng, B. Li, Y. Han, Z.Y. Li, S.L. Zhu, Y.Q. Liang, X.B. Feng, X.B. Wang, S.L. Wu, ACS Nano 14 (2020) 2077-2089. |
[22] | W. Guan, L. Tan, X.M. Liu, Z.D. Cui, Y.F. Zheng, K.W.K. Yeung, D. Zheng, Y.Q. Liang, Z.Y. Li, S.L. Zhu, X.B. Wang, S.L. Wu, Adv. Mater. 33 (2021) 2006047. |
[23] | Y. Yu, L. Tan, Z.Y. Li, X.M. Liu, Y.F. Zheng, X.B. Feng, Y.Q. Liang, Z.D. Cui, S.L. Zhu, S. L. Wu, ACS Nano 15 (2021) 10628-10639. |
[24] | H.P. Liu, J.F. Li, X.M. Liu, Z.Y. Li, Y. Zhang, Y.Q. Liang, Y.F. Zheng, S.L. Zhu, Z. D. Cui, S.L. Wu, ACS Nano 15 (2021) 18505-18519. |
[25] | Y.Q. Qiao, X.M. Liu, B. Li, Y. Han, Y.F. Zheng, K.W.K. Yeung, C.Y. Li, Z.D. Cui, Y.Q. Liang, Z.Y. Li, S.L. Zhu, X.B. Wang, S.L. Wu, Nat. Commun. 11 (2020) 4446. |
[26] | J.N. Fu, Y. Li, Y. Zhang, Y.Q. Liang, Y.F. Zheng, Z.Y. Li, S.L. Zhu, C.Y. Li, Z.D. Cui, S. L. Wu, Adv. Mater. 33 (2021) e2102926. |
[27] | S.B. Wei, Y.Q. Qiao, Z.C. Wu, X.M. Liu, Y. Li, Z.D. Cui, C.Y. Li, Y.F. Zheng, Y.Q. Liang, Z.Y. Li, S.L. Zhu, H.R. Wang, X.B. Wang, R.C. Che, S.L. Wu, Nano Today 37 (2021) 101090. |
[28] | J. Li, X.M. Liu, L. Tan, Z.D. Cui, X.J. Yang, Y.Q. Liang, Z.Y. Li, S.L. Zhu, Y.F. Zheng, K.W.K. Yeung, X.B. Wang, S.L. Wu, Nat. Commun. 10 (2019) 4490. |
[29] | Y.D. Xu, X.M. Liu, Y.F. Zheng, C.Y. Li, K.W.K. Yeung, Z.D. Cui, Y.Q. Liang, Z.Y. Li, S. L. Zhu, S.L. Wu, Bioact. Mater. 6 (2021) 1575-1587. |
[30] |
G. Hazell, P.W. May, P. Taylor, A.H. Nobbs, C.C. Welch, B. Su, Biomater. Sci. 6 (2018) 1424-1432.
DOI URL |
[31] |
J.P. Celli, B.Q. Spring, I. Rizvi, C.L. Evans, K.S. Samkoe, S. Verma, B.W. Pogue, T. Hasan, Chem. Rev. 110 (2010) 2795-2838.
DOI URL |
[32] | Y. Yang, X.Z. Wu, L. Ma, C. He, S.J. Cao, Y.P. Long, J.B. Huang, R.D. Rodriguez, C. Cheng, C.S. Zhao, L. Qiu, Adv. Mater. 33 (2021) 202005477. |
[33] |
F. Cieplik, D.M. Deng, W. Crielaard, W. Buchalla, E. Hellwig, A. Al-Ahmad, T. Maisch, Crit. Rev. Microbiol. 44 (2018) 571-589.
DOI URL PMID |
[34] |
X.T. Shi, C.W. Xue, F. Fang, X.W. Song, F. Yu, M.X. Liu, Z.P. Wei, X. Fang, D. X. Zhao, H.B. Xin, X.L. Wang, ACS Appl. Mater. Interfaces 8 (2016) 8386-8392.
DOI URL |
[35] |
J.F. Ma, K. Wang, L.Y. Li, T. Zhang, Y. Kong, S. Komarneni, Ceram. Int. 41 (2015) 2050-2056.
DOI URL |
[36] |
H.J. Li, Y. Zhou, W.G. Tu, J.H. Ye, Z.G. Zou, Adv. Funct. Mater. 25 (2015) 998-1013.
DOI URL |
[37] |
J.S. Luo, S.D. Tilley, L. Steier, M. Schreier, M.T. Mayer, H.J. Fan, M. Gratzel, Nano Lett. 15 (2015) 1395-1402.
DOI URL |
[38] | Y.G. Gao, Q. Wu, X.Z. Liang, Z.Y. Wang, Z.K. Zheng, P. Wang, Y.Y. Liu, Y. Dai, M. H. Whangbo, B.B. Huang, Adv. Sci. 7 (2020) 1902820. |
[39] |
X.J. Yu, J. Zhang, J. Zhang, J.F. Niu, J. Zhao, Y.C. Wei, B.H. Yao, Chem. Eng. J. 374 (2019) 316-327.
DOI URL |
[40] | J. Li, X.M. Liu, L. Tan, Y.Q. Liang, Z.D. Cui, X.J. Yang, S.L. Zhu, Z.Y. Li, Y.F. Zheng, K.W.k. Yeung, X.B. Wang, S.L. Wu, Small Methods 3 (2019) 1900048. |
[41] |
M.M. Zhang, J.J. Wang, Y. Wang, J.F. Zhang, X.P. Han, Y.N. Chen, Y.S. Wang, Z. Karim, W.B. Hu, Y.D. Deng, J. Mater. Sci. Technol. 62 (2021) 119-127.
DOI URL |
[42] | A. Celik-Kucuk, T. Abe, J. Power Sources 496 (2021) 229828. |
[43] | S.S. Xin, G.C. Liu, X.H. Ma, J.X. Gong, B.R. Ma, Q.H. Yan, Q.H. Chen, D. Ma, G.S. Zhang, M.C. Gao, Y.J. Xin, Appl. Catal. B Environ. 280 (2021) 119386. |
[44] |
Y.C. Chen, Y.J. Chen, P.H. Dong, Y.K. Hsu, ACS Appl. Energ. Mater. 3 (2020) 1373-1380.
DOI URL |
[45] |
Y.C. Chen, P.H. Dong, Y.K. Hsu, ACS Appl. Mater. Interfaces 13 (2021) 38375-38383.
DOI URL |
[46] | J.Y. Lin, C.C. Wan, Y.Y. Wang, J.C. Chen, J.Y. Lai, Y.D. Fan, J.P. Chuang, J. Elec- trochem. Soc. 154 (2007) H530-H535. |
[47] | F.C. Lei, Y.F. Sun, K.T. Liu, S. Gao, L. Liang, B.C. Pan, Y. Xie, J. Am. Chem. Soc. 136 (2014) 6826-6829. |
[48] | F. Zhang, Y.H. Li, M.Y. Qi, Z.R. Tang, Y.J. Xu, Appl. Catal. B Environ. 268 (2020) 118380. |
[49] |
P.F. Xia, S.W. Cao, B.C. Zhu, M.J. Liu, M.S. Shi, J.G. Yu, Y.F. Zhang, Angew. Chem. Int. Ed. 59 (2020) 5218-5225.
DOI URL |
[50] |
J. Li, S. Song, J.S. Meng, L. Tan, X.M. Liu, Y.F. Zheng, Z.Y. Li, K.W.K. Yeung, Z. D. Cui, Y.Q. Liang, S.L. Zhu, X.C. Zhang, S.L. Wu, J. Am. Chem. Soc. 143 (2021) 15427-15439.
DOI URL |
[51] |
C. Molteni, H.K. Abicht, M. Solioz, Appl. Environ. Microbiol. 76 (2010) 4099-4101.
DOI URL |
[52] | J. Li, L. Tan, X.M. Liu, Z.D. Cui, X.J. Yang, K.W.K. Yeung, P.K. Chu, S.L. Wu, ACS Nano 11 (2017) 11250-11263. |
[53] |
H. Zheng, P.C. Maness, D.M. Blake, E.J. Wolfrum, S.L. Smolinski, W.A. Jacoby, J. Photochem. Photobiol. A Chem. 130 (2000) 163-170.
DOI URL |
[54] | X.Y. Zhang, G.N. Zhang, H.Y. Zhang, X.P. Liu, J. Shi, H.X. Shi, X.H. Yao, P.K. Chu, X. Y. Zhang, Chem. Eng. J. 382 (2020) 122849. |
[55] | Y. Li, X.M. Liu, L. Tan, Z.D. Cui, D.D. Jing, X.J. Yang, Y.Q. Liang, Z.Y. Li, S.L. Zhu, Y.F. Zheng, K.W.K. Yeung, D. Zheng, X.B. Wang, S.L. Wu, Adv. Funct. Mater. 29 (2019) 1900946. |
[56] |
A. Paracchino, V. Laporte, K. Sivula, M. Gratzel, E. Thimsen, Nat. Mater. 10 (2011) 456-461.
DOI URL PMID |
[57] |
A. Paracchino, N. Mathews, T. Hisatomi, M. Stefik, S.D. Tilley, M. Gratzel, Energy Environ. Sci. 5 (2012) 8673-8681.
DOI URL |
[58] |
C. Gattinoni, A. Michaelides, Surf. Sci. Rep. 70 (2015) 424-447.
DOI URL |
[59] | T. Tynell, M. Karppinen, Semicond. Sci. Technol. 29 (2014) 043001. |
[1] | Yiqian Lv, Yueqing Zheng, Honglin Zhu, Yinghao Wu. Designing a dual-functional material with barrier anti-corrosion and photocatalytic antifouling properties using g-C3N4 nanosheet with ZnO nanoring [J]. J. Mater. Sci. Technol., 2022, 106(0): 56-69. |
[2] | Qi Xue, Tao Hang, Jianghu Liang, Chun-Chao Chen, Yunwen Wu, Huiqin Ling, Ming Li. Nonvolatile resistive memory and synaptic learning using hybrid flexible memristor based on combustion synthesized Mn-ZnO [J]. J. Mater. Sci. Technol., 2022, 119(0): 123-130. |
[3] | Shan Fu, Yuan Zhang, Yi Yang, Xiaomeng Liu, Xinxin Zhang, Lei Yang, Dake Xu, Fuhui Wang, Gaowu Qin, Erlin Zhang. An antibacterial mechanism of titanium alloy based on micro-area potential difference induced reactive oxygen species [J]. J. Mater. Sci. Technol., 2022, 119(0): 75-86. |
[4] | Yuan Zhang, Shan Fu, Lei Yang, Gaowu Qin, Erlin Zhang. A nano-structured TiO2/CuO/Cu2O coating on Ti-Cu alloy with dual function of antibacterial ability and osteogenic activity [J]. J. Mater. Sci. Technol., 2022, 97(0): 201-212. |
[5] | Yonghua Sun, Yuyu Zhao, He Zhang, Youjie Rong, Runhua Yao, Yi Zhang, Xiaohong Yao, Ruiqiang Hang. Corrosion behavior, antibacterial ability, and osteogenic activity of Zn-incorporated Ni-Ti-O nanopore layers on NiTi alloy [J]. J. Mater. Sci. Technol., 2022, 97(0): 69-78. |
[6] | Guanpeng Liu, Yulong Li, Ming Yan, Jicai Feng, Jian Cao, Min Lei, Quanwen Liu, Xiaowu Hu, Wenqin Wang, Xuewen Li. Vacuum wetting of Ag/TA2 to develop a novel micron porous Ti with significant biocompatibility and antibacterial activity [J]. J. Mater. Sci. Technol., 2022, 116(0): 180-191. |
[7] | Chang Gao, Yu Zhao, Weili Li, Yulong Qiao, Zhao Wang, Lu Jing, Jie Sheng, Wei-Dong Fei. Large linear electrostrain of acceptor-donor Co-doped ZnO films [J]. J. Mater. Sci. Technol., 2022, 109(0): 12-19. |
[8] | Olga Sacco, Paola Franco, Iolanda De Marco, Vincenzo Vaiano, Emanuela Callone, Riccardo Ceccato, Francesco Parrino. Photocatalytic activity of Eu-doped ZnO prepared by supercritical antisolvent precipitation route: When defects become virtues [J]. J. Mater. Sci. Technol., 2022, 112(0): 49-58. |
[9] | Jinlong Zhao, Chunguang Yang, Ke Yang. Novel Cu-bearing stainless steel: A promising food preservation material [J]. J. Mater. Sci. Technol., 2022, 113(0): 246-252. |
[10] | Jingbo Gao, Yuting Jin, Yongqiang Fan, Dake Xu, Lei Meng, Cong Wang, Yuanping Yu, Deliang Zhang, Fuhui Wang. Fabricating antibacterial CoCrCuFeNi high-entropy alloy via selective laser melting and in-situ alloying [J]. J. Mater. Sci. Technol., 2022, 102(0): 159-165. |
[11] | Yaping Wang, Qianqian Wang, Guoyi Wu, Hengxue Xiang, Mugaanire Tendo Innocent, Mian Zhai, Chao Jia, Peng Zou, Jialiang Zhou, Meifang Zhu. Ultra-fast bacterial inactivation of Cu2O@halloysite nanotubes hybrids with charge adsorption and physical piercing ability for medical protective fabrics [J]. J. Mater. Sci. Technol., 2022, 122(0): 1-9. |
[12] | Chunbo Wang, Yuqing Liang, Ying Huang, Meng Li, Baolin Guo. Porous photothermal antibacterial antioxidant dual-crosslinked cryogel based on hyaluronic acid/ polydopamine for non-compressible hemostasis and infectious wound repair [J]. J. Mater. Sci. Technol., 2022, 121(0): 207-219. |
[13] | Lujie Zhang, Jie Pan, Jue Zhang. Integrated two-phase free radical hydrogel: Safe, ultra-fast tooth whitening and antibacterial activity [J]. J. Mater. Sci. Technol., 2022, 100(0): 59-66. |
[14] | Luohuizi Li, Guize Li, Yong Wu, Yuancheng Lin, Yangcui Qu, Yan Wu, Kunyan Lu, Yi Zou, Hong Chen, Qian Yu, Yanxia Zhang. Dual-functional bacterial cellulose modified with phase-transitioned proteins and gold nanorods combining antifouling and photothermal bactericidal properties [J]. J. Mater. Sci. Technol., 2022, 110(0): 14-23. |
[15] | Lin Zhang, Nuomei Li, Qiuchen Ma, Jiahui Ding, Chuang Chen, Zhaocheng Hu, Weiwei Zhao, Yufeng Li, Huanhuan Feng, Mingyu Li, Hongjun Ji. Large-area flexible and transparent UV photodetector based on cross-linked Ag NW@ZnO NRs with high performance [J]. J. Mater. Sci. Technol., 2022, 110(0): 65-72. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||