J. Mater. Sci. Technol. ›› 2022, Vol. 122: 1-9.DOI: 10.1016/j.jmst.2021.12.059
• Research Article • Next Articles
Yaping Wanga, Qianqian Wanga, Guoyi Wub, Hengxue Xianga,*(), Mugaanire Tendo Innocenta, Mian Zhaia, Chao Jiaa, Peng Zoub, Jialiang Zhoua,*(
), Meifang Zhua
Received:
2021-09-27
Revised:
2021-11-20
Accepted:
2021-12-09
Published:
2022-09-20
Online:
2022-03-19
Contact:
Hengxue Xiang,Jialiang Zhou
About author:
zhoujialiang@dhu.edu.cn (J. Zhou).Yaping Wang, Qianqian Wang, Guoyi Wu, Hengxue Xiang, Mugaanire Tendo Innocent, Mian Zhai, Chao Jia, Peng Zou, Jialiang Zhou, Meifang Zhu. Ultra-fast bacterial inactivation of Cu2O@halloysite nanotubes hybrids with charge adsorption and physical piercing ability for medical protective fabrics[J]. J. Mater. Sci. Technol., 2022, 122: 1-9.
Fig. 1. (a) Schematic illustration of the synthesis process of Cu2O@HNTs nanohybrids; (b) the process of preparing Cu2O by Cu2+ chelation and in-situ reduction; (c) the sterilization mechanism of Cu2O@HNTs.
Fig. 2. TEM images of (a, b) neat HNTs and (c, d) Cu2O@HNTs hybrids under different magnifications; (e) XRD spectra, (f) FT-IR spectra and (g) XPS survey scan spectra of HNTs and various Cu2O@HNTs hybrids; High-resolution XPS spectrum of (h) Cu 2p and (i) O 1 s for Cu2O@HNTs hybrids. The inset in (d) shows the size distribution for Cu2O on HNTs determined by measuring the diameter of over 30 Cu2O nanoparticles in several SEM images. Curve in blue shows the Gaussian distributions of Cu2O particle sizes.
Fig. 3. Growth curves of (a) E.coli and (b) S.aureus treated with control, HNTs, Cu2O, Cu2O@HNTs, the results were corresponded to means ± SD (SD, standard deviation; n = 3); (c) E.coli and S.aureus killing ratios of HNTs, Cu2O and Cu2O@HNTs. Asterisks indicate significant differences (P values: *P < 0.05, **P < 0.01, ***P < 0.001). All values are expressed as means ± SD, n = 3. (d) Antibacterial activity in PBS: The bacterial suspension in PBS without any substance was named as control. The agar plate photographs of E.coli and S. aureus bacterial cells were re-cultured on it after being treated with HNTs, Cu2O, Cu2O@HNTs. Fluorescent live/dead stain images of control, HNTs, Cu2O, Cu2O@HNTs for E.coli and S. aureus, respectively. Scale bar is 20 μm.
Fig. 4. (a) Inactivation of E. coli treated by Cu2O and Cu2O@HNTs versus the time. (b) Inactivation time of E. coli after treatments by different antibacterial nanomaterials with samples concentration (ZnO-MNSs [52], GO-Ag [53], Ag-CoFe2O4-GO [54], Bi2MoO6 /Ag-AgCl [55], Cu2O [56], Cu-Zn [57], Cu [58]). (c) Photographs of agar plates on which E. coli bacterial cells incubated with Cu2O and Cu2O@HNTs samples at different time.
Fig. 5. (a) Zeta potentials of HNTs, Cu2O and Cu2O@HNTs; SEM images of E. coli cells treated by (b) E. coli cells, (c) HNTs, (d) Cu2O and (e) Cu2O@HNTs hybrids 18 h in LB medium; (f) The soluble protein content of E. coli treated with HNTs and Cu2O@HNTs; (g) QRT-PCR agarose gel electrophoresis; (h) The relative expression of glucokinase GK gene in control and E.coli bacteria treated by Cu2O@HNTs (P values: *P < 0.05, **P < 0.01).
Samples | Time (h) | K+ (mg/L) | Ca2+ (mg/L) | Mg2+ (mg/L) | Cu2+ (mg/L) |
---|---|---|---|---|---|
Blank | 0 | 0.4607 | 0.2683 | 0.0000 | 0.0000 |
2 | 0.3567 | 0.2561 | 0.0000 | 0.0000 | |
4 | 0.3353 | 0.2443 | 0.0000 | 0.0000 | |
6 | 0.3428 | 0.2531 | 0.0000 | 0.0000 | |
Cu2O@HNTs | 0 | 0.4485 | 0.3082 | 0.0000 | 0.0388 |
2 | 0.4976 | 0.3031 | 0.0000 | 0.0402 | |
4 | 0.533 | 0.3056 | 0.0248 | 0.0279 | |
6 | 0.5537 | 0.4833 | 0.1054 | 0.0397 |
Table 1. Concentrations of K+, Ca2+, Mg2+ and Cu2+ in the extracellular fluid treated with antibacterial materials.
Samples | Time (h) | K+ (mg/L) | Ca2+ (mg/L) | Mg2+ (mg/L) | Cu2+ (mg/L) |
---|---|---|---|---|---|
Blank | 0 | 0.4607 | 0.2683 | 0.0000 | 0.0000 |
2 | 0.3567 | 0.2561 | 0.0000 | 0.0000 | |
4 | 0.3353 | 0.2443 | 0.0000 | 0.0000 | |
6 | 0.3428 | 0.2531 | 0.0000 | 0.0000 | |
Cu2O@HNTs | 0 | 0.4485 | 0.3082 | 0.0000 | 0.0388 |
2 | 0.4976 | 0.3031 | 0.0000 | 0.0402 | |
4 | 0.533 | 0.3056 | 0.0248 | 0.0279 | |
6 | 0.5537 | 0.4833 | 0.1054 | 0.0397 |
Fig. 6. Schematic illustration of (a) in-situ polymerization procedures of PET/Cu2O@HNTs and (b) melt spinning procedures of CHPET fibers; (c) Mechanical performance of neat PET fiber and series of CHPET fibers; (d) E. coli, S. aureus, V583 and MRSA killing ratios of PET, CHPET-0.2 fibers. All values are expressed as means ± SD, n = 3. (e) Virus viability of HCoV-OC43 in PET, CuO/PET, CuO/PA6 and CHPET-0.2 after cultivation.
Fig. 7. (a) Cell viability of Hela cells in the control group and Cu2O@HNTs after 1, 2 and 3 days of cultivation, respectively; (b) In vitro cytocompatibility of Cu2O@HNTs. Morphology of Hela cells after 1, 2, and 3 days of culture. Scale bar is 100 μm.
[1] | A. Chouksey, M. Agrawal,Eng. Sci. 15 (2021) 177-186. |
[2] | E. Fleming, Y. Luo,ES Food Agrofor. 4 (2021) 5-8. |
[3] | P. Tsai,Eng. Sci. 10 (2020) 1-7. |
[4] | B. Peng, X.L. Zhang, D. Aarts, R.P.A. Dullens,Nat. Nanotechnol. 13 (2018)478. |
[5] |
J. Zhou, Z. Hu, F. Zabihi, Z. Chen, M. Zhu,Adv. Fiber Mater. 2 (2020) 123-139.
DOI URL |
[6] | C. Walsh, Nature406(2000) 775-781. |
[7] |
E.D. Brown,G.D. Wright,Nature529 (2016) 336-343.
DOI URL |
[8] | H. Yu, C. Xu, Y. Li, F. Jin, F. Ye, X. Li,ES Energy Environ. 8(2020) 65-77. |
[9] | S.A .A.R. Sayyed, N.I. Beedri, P.K. Bhujbal, S.F. Shaikh, H.M. Pathan,ES Mater. Manuf.10 (2020) 45-51. |
[10] |
P.P. Rade, P.S. Giram, A.A. Shitole, N. Sharma, B. Garnaik,Adv. Fiber Mater. 4 (2022) 76-88.
DOI URL |
[11] | K. Sunada, M. Minoshima, K. Hashimoto,J. Hazard. Mater. 235-236 (2012) 265-270. |
[12] |
J.A. Lemire, J.J. Harrison, R.J. Turner,Nat. Rev. Microbiol. 11 (2013) 371-384.
DOI URL |
[13] | D. Zhang, B. Br, O.L. Williams, V.H. Santos, B.J. Lofink, E.M. Becher, A. Partyka, X. Peng, L. Sun,Eng. Sci. 12 (2020) 106-112. |
[14] | L. Zhao, Q.Z. Ge, J.X. Sun, J.S. Peng, X.Z. Yin, L.P. Huang, J.H. Wang, H. Wang, L. X. Wang,Adv. Compos. Hybrid Mater. 2 (2019) 481-491. |
[15] | Y. Zhu, Y. Wang, L. Sha, J. Zhao, X. Li,J. Appl. Polym. Sci. 135 (2018) 46755. |
[16] |
Y. Zhu, Y. Wang, L. Sha, J. Zhao,Appl. Surf. Sci. 425 (2017) 1101-1110.
DOI URL |
[17] | S.R. Lustig, J.J.H. Biswakarma, D. Rana, S.H. Tilford, W. Hu, M. Su,M.S. Rosen-blatt, ACS Nano 14 (2020) 7651-7658. |
[18] |
J. Zhou, C. Wang, A.J. Cunningham, Z. Hu, H. Xiang, B. Sun, W. Zuo, M. Zhu,Mater. Sci. Eng. C 101 (2019) 499-504.
DOI URL |
[19] |
J. Zhou, H. Xiang, F. Zabihi, S. Yu, B. Sun, M. Zhu,Nano Res. 12 (2019) 1453-1460.
DOI URL |
[20] |
J. Zhou, Y. Wang, W. Pan, H. Xiang, P. Li, Z. Zhou, M. Zhu,J. Mater. Sci. Technol. 81 (2021) 58-66.
DOI URL |
[21] |
K. Feng, G.-.Y. Hung, J. Liu, M. Li, C. Zhou, M. Liu,Chem. Eng. J. 331 (2018) 744-754.
DOI URL |
[22] |
E. Abdullayev, K. Sakakibara, K. Okamoto, W. Wei, K. Ariga, Y. Lvov,ACS Appl. Mater. Interfaces 3 (2011) 4040-4046.
DOI URL |
[23] | H. Xiang, J. Zhou, Y. Zhang, M.T. Innocent, M. Zhu,Appl. Clay Sci. 182 (2019) 105249. |
[24] | M. Liu, C. Wu, Y. Jiao, S. Xiong, C. Zhou,J. Mater. Chem. B 1 (2013) 2078-2089. |
[25] |
J. Liu, J. Fu, Y. Zhou, W. Zhu, L.-.P. Jiang, Y. Lin,Nano Lett. 20 (2020) 4823-4828.
DOI URL |
[26] | L. Dai, Q. Qin, P. Wang, X. Zhao, C. Hu, P. Liu, R. Qin, M. Chen, D. Ou, C. Xu, S. Mo, B. Wu, G. Fu, P. Zhang, N. Zheng,Sci. Adv. 3 (2017) e1701069. |
[27] |
M.S. Xie, B.Y. Xia, Y. Li, Y. Yan, Y. Yang, Q. Sun, S.H. Chan, A. Fisher, X. Wang,Energy Environ. Sci. 9 (2016) 1687-1695.
DOI URL |
[28] | Y.H. Tsai, C.Y. Chiu, M.H. Huang,J. Phys. Chem. C 117 (2013) 24611-24617. |
[29] |
T. Li, W. Zeng, L. Chen, C. Wang,Mater. Lett. 164 (2016) 225-228.
DOI URL |
[30] |
P. Yuan, P.D. Southon, Z. Liu, M.E.R. Green, J.M. Hook, S.J. Antill, C.J. Kepert,J. Phys. Chem. C 112 (2008) 15742-15751.
DOI URL |
[31] |
T. Yu, L.T. Swientoniewski, M. Omarova, M.-.C. Li, I.I. Negulescu, N. Jiang, O. A. Darvish, A. Panchal, D.A. Blake, Q. Wu, Y.M. Lvov, V.T. John, D. Zhang,ACS Appl. Mater. Interfaces 11 (2019) 27944-27953.
DOI URL |
[32] |
K. Giannousi, G. Sarafidis, S. Mourdikoudis, A. Pantazaki, C. Dendrinou-Samara,Inorg. Chem. 53 (2014) 9657-9666.
DOI URL PMID |
[33] |
Y. Yang, J. Han, X. Ning, W. Cao, W. Xu, L. Guo,ACS Appl. Mater. Interfaces 6 (2014) 22534-22543.
DOI URL |
[34] | K. Hu, L. Xie, Y. Zhang, M. Hanyu, Z. Yang, K. Nagatsu, H. Suzuki, J. Ouyang, X. Ji, J. Wei, H. Xu, O.C. Farokhzad, S.H. Liang, L. Wang, W. Tao, M.-.R. Zhang,Nat. Commun. 11 (2020) 2778. |
[35] | J.J. Teo, Y. Chang,H.C. Zeng, Langmuir 22 (2006) 7369-7377. |
[36] | Z. Duan, Q. Zhao, S. Wang, Q. Huang, Z. Yuan, Y. Zhang, Y. Jiang, H. Tai,Sens. Actuators B 317 (2020) 128204. |
[37] | W. Zhang, J. Song, Q. He, H. Wang, W. Lyu, H. Feng, W. Xiong, W. Guo, J. Wu, L. Chen,J. Hazard. Mater. 384 (2020) 121445. |
[38] | W. Wang, H. Feng, J. Liu, M. Zhang, S. Liu, C. Feng, S. Chen,Chem. Eng. J. 386 (2020) 124116. |
[39] |
Y. Yang, X. Wu, C. He, J. Huang, S. Yin, M. Zhou, L. Ma, W. Zhao, L. Qiu, C. Cheng, C. Zhao,ACS Appl. Mater. Interfaces 12 (2020) 13698-13708.
DOI URL |
[40] |
J. Li, H. Ejima, N. Yoshie,ACS Appl. Mater. Interfaces 8 (2016) 19047-19053.
DOI URL |
[41] |
A.H. Geeraerd, C.H. Herremans, J.F. Van Impe,Int. J. Food Microbiol. 59 (2000) 185-209.
DOI URL |
[42] | E.E. Elemike, D.C. Onwudiwe, M. Singh. J. Inorg,Organomet. Polym. Mater. 30 (2020) 400-409. |
[43] |
M.A.J.S. van Boekel,Int. J. Food Microbiol. 74 (2002) 139-159.
DOI URL |
[44] | H.C.D.B. Costa, É.S. Siguemoto, T.A.B.B. Cavalcante, D. de Oliveira Silva, L. G.M. Vieira, J.A.W. Gut,Food Chem. 341 (2021) 128287. |
[45] | S. Zhu, O. Campanella, G. Chen,J. Food Eng. 292 (2021) 110364. |
[46] |
Y.K. Mishra, R. Adelung, C. Röhl, D. Shukla, F. Spors, V. Tiwari,Antivir. Res. 92 (2011) 305-312.
DOI URL |
[47] | Y.N. Chen, Y.H. Hsueh, C.T. Hsieh, D.Y. Tzou, P.L. Chang,Int. J. Environ. Res. Pub- lic Health 13 (20161) (2022) 430. |
[48] |
S. Ma, S. Zhan, Y. Jia, Q. Zhou,ACS Appl. Mater. Interfaces 7 (2015) 10576-10586.
DOI URL |
[49] | M. Li, D. Li, Z. Zhou, P. Wang, X. Mi, Y. Xia, H. Wang, S. Zhan, Y. Li, L. Li,Chem. Eng. J. 382 (2020) 122762. |
[50] |
L. Xiong, H. Yu, C. Nie, Y. Xiao, Q. Zeng, G. Wang, B. Wang, H. Lv, Q. Li, S. Chen,RSC Adv. 7 (2017) 51822-51830.
DOI URL |
[51] | S.L. Warnes, Z.R. Little,C.W. Keevil, mBio 6 (2015) e01697-e01715. |
[52] |
J.O. Noyce, H. Michels, C.W. Keevil,Appl. Environ. Microbiol. 73 (2007) 2748-2750.
DOI URL |
[53] | X. Sun, M. Dong, Z. Guo, H. Zhang, J. Wang, P. Jia, T. Bu, Y. Liu, L. Li, L. Wang, Int. J. Biol.Macromol. 167 (2021) 10-22. |
[54] | X. Cai, J. Zhang, Y. Ouyang, D. Ma, S. Tan,Y. Peng, Langmuir 29 (2013) 5279-5285. |
[55] | X. Zhang, Z. Zhang, Q. Shu, C. Xu, Q. Zheng, Z. Guo, C. Wang, Z. Hao, X. Liu, G. Wang, W. Yan, H. Chen, C. Lu,Adv. Funct. Mater. 31 (2021) 2008720. |
[56] | J. Zhou, Q. Zhu, W. Pan, H. Xiang, Z. Hu, M. Zhu,Macromol. Rapid Commun. 42 (2021) 2000498. |
[57] | J. Zhou, Q. Wang, C. Jia, M.T. Innocent, W. Pan, H. Xiang,M. Zhu, Macro-molecules 54 (2021) 7529-7539. |
[58] | Y. Su, X. Zhang, G. Ren, Z. Zhang, Y. Liang, S. Wu, J. Shen,Chem. Eng. J. 400 (2020) 125949. |
[1] | Wei Juene Chong, Shirley Shen, Yuncang Li, Adrian Trinchi, Dejana Pejak, Ilias (Louis) Kyratzis, Antonella Sola, Cuie Wen. Additive manufacturing of antibacterial PLA-ZnO nanocomposites: Benefits, limitations and open challenges [J]. J. Mater. Sci. Technol., 2022, 111(0): 120-151. |
[2] | Lijun Fan, Wenxin Sun, Yuhong Zou, Qian-qian Xu, Rong-Chang Zeng, Jingrui Tian. Enhanced corrosion resistance, antibacterial activity and biocompatibility of gentamicin-montmorillonite coating on Mg alloy-in vitro and in vivo studies [J]. J. Mater. Sci. Technol., 2022, 111(0): 167-180. |
[3] | Guanpeng Liu, Yulong Li, Ming Yan, Jicai Feng, Jian Cao, Min Lei, Quanwen Liu, Xiaowu Hu, Wenqin Wang, Xuewen Li. Vacuum wetting of Ag/TA2 to develop a novel micron porous Ti with significant biocompatibility and antibacterial activity [J]. J. Mater. Sci. Technol., 2022, 116(0): 180-191. |
[4] | Lujie Zhang, Jie Pan, Jue Zhang. Integrated two-phase free radical hydrogel: Safe, ultra-fast tooth whitening and antibacterial activity [J]. J. Mater. Sci. Technol., 2022, 100(0): 59-66. |
[5] | Zexin Liu, Xiangmei Liu, Zhenduo Cui, Yufeng Zheng, Zhaoyang Li, Yanqin Liang, Xubo Yuan, Shengli Zhu, Shuilin Wu. Surface photodynamic ion sterilization of ITO-Cu2O/ZnO preventing touch infection [J]. J. Mater. Sci. Technol., 2022, 122(0): 10-19. |
[6] | Mengmeng Zhang, Jiajun Wang, Yang Wang, Jinfeng Zhang, Xiaopeng Han, Yanan Chen, Yuesheng Wang, Zaghib Karim, Wenbin Hu, Yida Deng. Promoting the charge separation and photoelectrocatalytic water reduction kinetics of Cu2O nanowires via decorating dual-cocatalysts [J]. J. Mater. Sci. Technol., 2021, 62(0): 119-127. |
[7] | Jiajun Qiu, Lu Liu, Shi Qian, Wenhao Qian, Xuanyong Liu. Why does nitrogen-doped graphene oxide lose the antibacterial activity? [J]. J. Mater. Sci. Technol., 2021, 62(0): 44-51. |
[8] | Mengyang Wang, Shichao Bi, Jianhui Pang, Zhongzheng Zhou, Di Qin, Honglei Wang, Xiaojie Cheng, Xiguang Chen. Precise quantification of the antibacterial activity of chitosan by NB medium neutralizer [J]. J. Mater. Sci. Technol., 2021, 70(0): 224-232. |
[9] | Yang Xue, Jun Chen, Lan Zhang, Yong Han. BSA-lysozyme coated NaCa2HSi3O9 nanorods on titanium for cytocompatibility and antibacterial activity [J]. J. Mater. Sci. Technol., 2021, 88(0): 240-249. |
[10] | Jialiang Zhou, Yaping Wang, Weinan Pan, Hengxue Xiang, Peng Li, Zhe Zhou, Meifang Zhu. High thermal stability Cu2O@OZrP micro-nano hybrids for melt-spun excellent antibacterial activity polyester fibers [J]. J. Mater. Sci. Technol., 2021, 81(0): 58-66. |
[11] | Yongjin Zou, Xi Zhang, Jing Liang, Cuili Xiang, Hailiang Chu, Huanzhi Zhang, Fen Xu, Lixian Sun. Encapsulation of hollow Cu2O nanocubes with Co3O4 on porous carbon for energy-storage devices [J]. J. Mater. Sci. Technol., 2020, 55(0): 182-189. |
[12] | Wang Guo, Wei Liu, Li Xu, Pei Feng, Yanru Zhang, Wenjing Yang, Cijun Shuai. Halloysite nanotubes loaded with nano silver for the sustained-release of antibacterial polymer nanocomposite scaffolds [J]. J. Mater. Sci. Technol., 2020, 46(0): 237-247. |
[13] | Changwei Tang, Xiaohui Ning, Jian Li, Hui-Lin Guo, Ying Yang. Modulating conductivity type of cuprous oxide (Cu2O) films on copper foil in aqueous solution by comproportionation [J]. J. Mater. Sci. Technol., 2019, 35(8): 1570-1577. |
[14] | Peisan Wang, Chunxia Qi, Luyuan Hao, Pengchao Wen, Xin Xu. Sepiolite/Cu2O/Cu photocatalyst: Preparation and high performance for degradation of organic dye [J]. J. Mater. Sci. Technol., 2019, 35(3): 285-291. |
[15] | Chi Xiao, Liqing Wang, Yuping Ren, Shineng Sun, Erlin Zhang, Chongnan Yan, Qi Liu, Xiaogang Sun, Fenyong Shou, Jingzhu Duan, Huang Wang, Gaowu Qin. Indirectly extruded biodegradable Zn-0.05wt%Mg alloy with improved strength and ductility: In vitro and in vivo studies [J]. J. Mater. Sci. Technol., 2018, 34(9): 1618-1627. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||