J. Mater. Sci. Technol. ›› 2021, Vol. 81: 58-66.DOI: 10.1016/j.jmst.2021.01.013
• Research Article • Previous Articles Next Articles
Jialiang Zhoua, Yaping Wanga, Weinan Pana, Hengxue Xianga, Peng Lib, Zhe Zhoua,*(), Meifang Zhua
Received:
2020-09-30
Revised:
2020-11-11
Accepted:
2020-11-17
Published:
2021-01-09
Online:
2021-01-09
Contact:
Zhe Zhou
About author:
* E-mail address: zzhe@dhu.edu.cn (Z. Zhou)Jialiang Zhou, Yaping Wang, Weinan Pan, Hengxue Xiang, Peng Li, Zhe Zhou, Meifang Zhu. High thermal stability Cu2O@OZrP micro-nano hybrids for melt-spun excellent antibacterial activity polyester fibers[J]. J. Mater. Sci. Technol., 2021, 81: 58-66.
Fig. 1. SEM images of (a) neat α-ZrP, (b) OZrP, (c) Cu 2O@ZrP nanosheets; TEM images of (d) neat α-ZrP, (e) Cu 2O@OZrP nanosheets, (f) enlarged view of the red area in (e), (g) element mapping of the Cu2O@ZrP nanosheets.
Fig. 3. (a) FTIR spectra and (b) TGA curves of ZrP, Cu2O@ZrP and Cu2O@OZrP, (c) digital photos of the dispersibility of ZrP, Cu2O@ZrP and Cu2O@OZrP in n-hexane and water.
Microbes | Samples | Sample concentration (mg/L) | Viable bacterial colonies after 24 h contact (CFU/mL) | Microbial reduction (%) | MIC |
---|---|---|---|---|---|
E. coli | Blank | 0 | 7.1 × 10 6 | No effect | >10,000 |
Cu2O@OZrP | 25 | <1 | >99 | 25 | |
S. aureus | Blank | 0 | 1.1 × 10 6 | No effect | >10,000 |
Cu2O@OZrP | 25 | <1 | >99 | 25 | |
C. albicans | Blank | 0 | 8.3 × 10 4 | No effect | >10,000 |
Cu2O@OZrP | 25 | <1 | >99 | 25 |
Table 1 Antibacterial activity of Cu2O@OZrP nanosheets.
Microbes | Samples | Sample concentration (mg/L) | Viable bacterial colonies after 24 h contact (CFU/mL) | Microbial reduction (%) | MIC |
---|---|---|---|---|---|
E. coli | Blank | 0 | 7.1 × 10 6 | No effect | >10,000 |
Cu2O@OZrP | 25 | <1 | >99 | 25 | |
S. aureus | Blank | 0 | 1.1 × 10 6 | No effect | >10,000 |
Cu2O@OZrP | 25 | <1 | >99 | 25 | |
C. albicans | Blank | 0 | 8.3 × 10 4 | No effect | >10,000 |
Cu2O@OZrP | 25 | <1 | >99 | 25 |
Fig. 4. Representative fluorescence microscopy images of E. coli and S. aureus: (a, c) control, (b, d) treated with Cu2O@OZrP nanosheets for 6 h and subsequently stained briefly (30 min) with DCFH-DA (2,7-dichlorofuorescin diacetate). SEM images of E. coli cells treated by Cu2O@OZrP (e) 3 h, (g) 8 h, (f, h) enlarged view of the red area; TEM images of E. coli cells treated by Cu2O@OZrP (i) 3 h, (k) 8 h, (j, l) enlarged view of the red area.
Fig. 5. Cytotoxicity of ZrP, OZrP, Cu2O@OZrP on NIH3T3 (±SD,n = 3), the concentrations of the samples were set at 0.04, 0.2, 1, 5, 25, 100 and 500 mg/mL.
Fig. 6. Digital photos of fibers: (a) PET, (b) PET/Cu2O@OZrP-0.05 %, (c) PET/Cu2O@OZrP-0.1 %, (d) PET/Cu2O@OZrP-0.2 %, (e) PET/Cu2O@OZrP-0.4 %; SEM images of fibers: (f) PET/Cu2O@OZrP-0.05 %, (g) PET/Cu2O@OZrP-0.1 %, (h) PET/Cu2O@OZrP-0.2 %, (i) PET/Cu2O@OZrP-0.4 %; (j) mechanical performance of PET/Cu2O@ZrP fibers.
Microbes | Samples | Blank sample viable colonies (CFU/mL) | Viable colonies (CFU/mL) | Microbial reduction (%) |
---|---|---|---|---|
E. coli | PET | 1.5 × 10 6 | 1.5 × 10 6 | No effect |
PET/Cu2O@OZrP-0.2% | 1.5 × 10 6 | <1 | >99 | |
S. aureus | PET | 8.3 × 10 5 | 8.3 × 10 5 | No effect |
PET/Cu2O@OZrP-0.2% | 8.3 × 10 5 | <1 | >99 | |
C. albicans | PET | 6.1 × 10 5 | 6.1 × 10 5 | No effect |
PET/Cu2O@OZrP-0.2% | 9.6 × 10 4 | <1 | >99 | |
MRSA | PET | 1.6 × 10 6 | 1.6 × 10 6 | No effect |
PET/Cu2O@OZrP-0.2% | 1.6 × 10 6 | <1 | >99 | |
VRE | PET | 2.1 × 10 6 | 2.1 × 10 6 | No effect |
PET/Cu2O@OZrP-0.2% | 2.1 × 10 6 | <1 | >99 |
Table 2 Antibacterial activity of PET/Cu2O@OZrP fibers.
Microbes | Samples | Blank sample viable colonies (CFU/mL) | Viable colonies (CFU/mL) | Microbial reduction (%) |
---|---|---|---|---|
E. coli | PET | 1.5 × 10 6 | 1.5 × 10 6 | No effect |
PET/Cu2O@OZrP-0.2% | 1.5 × 10 6 | <1 | >99 | |
S. aureus | PET | 8.3 × 10 5 | 8.3 × 10 5 | No effect |
PET/Cu2O@OZrP-0.2% | 8.3 × 10 5 | <1 | >99 | |
C. albicans | PET | 6.1 × 10 5 | 6.1 × 10 5 | No effect |
PET/Cu2O@OZrP-0.2% | 9.6 × 10 4 | <1 | >99 | |
MRSA | PET | 1.6 × 10 6 | 1.6 × 10 6 | No effect |
PET/Cu2O@OZrP-0.2% | 1.6 × 10 6 | <1 | >99 | |
VRE | PET | 2.1 × 10 6 | 2.1 × 10 6 | No effect |
PET/Cu2O@OZrP-0.2% | 2.1 × 10 6 | <1 | >99 |
[1] |
H. Han, J. Zhu, D.Q. Wu, F.X. Li, X.L. Wang, J.Y. Yu, X.H. Qin, Adv. Funct. Mater. 29 (2019), 1806594.
DOI URL |
[2] |
L. Wang, X. Zhang, X. Yu, F. Gao, Z. Shen, X. Zhang, S. Ge, J. Liu, Z. Gu, C. Chen, Adv. Mater. 31 (2019), 1901965.
DOI URL |
[3] |
C. Shuai, L. Liu, M. Zhao, P. Feng, Y. Yang, W. Guo, C. Gao, F. Yuan, J. Mater. Sci. Technol. 34 (2018) 1944-1952.
DOI URL |
[4] | B.E. Erickson, Chem. Eng. News 92 (2014) 27-29. |
[5] |
H. Bai, H. Yuan, C. Nie, B. Wang, F. Lv, L. Liu, S. Wang, Angew. Chem., Int. Ed. 54 (2015) 13208-13213.
DOI URL |
[6] |
J. Huang, J. Zhou, J. Zhuang, H. Gao, D. Huang, L. Wang, W. Wu, Q. Li, D.P. Yang, M.Y. Han, ACS Appl. Mater. Interfaces 9 (2017) 36606-36614.
DOI URL |
[7] |
A.A. Alswat, M.B. Ahmad, M.Z. Hussein, N.A. Ibrahim, T.A. Saleh, J. Mater. Sci. Technol. 33 (2017) 889-896.
DOI URL |
[8] |
M. Li, L. Nan, C. Liang, Z. Sun, L. Yang, K. Yang, J. Mater. Sci. Technol. 62 (2021)139-147.
DOI URL |
[9] | A.U. Ubale, M.R. Belkhedkar, J. Mater. Sci. Technol. 31 (2015) 1-9. |
[10] |
Y.H. Leung, A.M.C. Ng, X. Xu, Z. Shen, L.A. Gethings, M.T. Wong, C.M.N. Chan, M.Y. Guo, Y.H. Ng, A.B. Djurišić, P.K.H. Lee, W.K. Chan, L.H. Yu, D.L. Phillips, A.P.Y. Ma, F.C.C. Leung, Small 10 (2014) 1171-1183.
DOI PMID |
[11] |
D. Hong, G. Cao, J. Qu, Y. Deng, J. Tang, J. Mater. Sci. Technol. 34 (2018)2359-2367.
DOI URL |
[12] |
A.W. Jatoi, I.S. Kim, Q.Q. Ni, Carbohydr. Polym. 207 (2019) 640-649.
DOI URL |
[13] | S.M. Dizaj, F. Lotfipour, M. Barzegar-Jalali, M.H. Zarrintan, K. Adibkia, Mater.Sci. Eng. C 44 (2014) 278-284. |
[14] |
A. Sirelkhatim, S. Mahmud, A. Seeni, N.H.M. Kaus, L.C. Ann, S.K.M. Bakhori, H. Hasan, D. Mohamad, Nano-Micro Lett. 7 (2015) 219-242.
DOI PMID |
[15] |
E. Valsami-Jones, I. Lynch, Science 350 (2015) 388-389.
DOI PMID |
[16] |
M. Hans, A. Erbe, S. Mathews, Y. Chen, M. Solioz, F. Mucklich, Langmuir 29 (2013) 16160-16166.
DOI URL |
[17] |
J. Ramyadevi, K. Jeyasubramanian, A. Marikani, G. Rajakumar, A.A. Rahuman, Mater. Lett. 71 (2012) 114-116.
DOI URL |
[18] |
S. Meghana, P. Kabra, S. Chakraborty, N. Padmavathy, RSC Adv. 5 (2015)12293-12299.
DOI URL |
[19] |
J. Zhou, H. Xiang, F. Zabihi, S. Yu, B. Sun, M. Zhu, Nano Res. 12 (2019)1453-1460.
DOI URL |
[20] |
J. Zhou, C. Wang, A.J. Cunningham, Z. Hu, H. Xiang, B. Sun, W. Zuo, M. Zhu, Mater. Sci. Eng. C 101 (2019) 499-504.
DOI URL |
[21] |
J. Zhou, X. Fei, C. Li, S. Yu, Z. Hu, H. Xiang, B. Sun, M. Zhu, Polymers 11 (2019)113-126.
DOI URL |
[22] |
Y. Du, F. Deng, X. Jiang, H. Ji, D. Yu, W. Wang, B. Sun, M. Zhu, Prog. Nat. Sci.: Mater. Int. 25 (2015) 503-511.
DOI URL |
[23] |
A. Sharma, R.K. Dutta, A. Roychowdhury, D. Das, RSC Adv. 6 (2016)74812-74821.
DOI URL |
[24] | L. Chun, L. Yuan, C. Ping, H. Jia, L. Zhongshi, A. Ningjian, C. Bin, Polym. Bull. Berl. (Berl) 71 (2014) 2543-2557. |
[25] |
D. Turan, H. Sirin, S. Gurdag, G. Ozkoc, Polym. Compos. 34 (2013) 887-896.
DOI URL |
[26] |
X. Cai, S.Z. Tan, M.S. Lin, A. Xie, W.J. Mai, X.J. Zhang, Z.D. Lin, T. Wu, Y.L. Liu, Langmuir 27 (2011) 7828-7835.
DOI URL |
[27] |
X. Cai, J.L. Zhang, Y. Ouyang, D. Ma, S.Z. Tan, Y.L. Peng, Langmuir 29 (2013)5279-5285.
DOI URL |
[28] | A.G. Xie, C. Xiang, L.M. Song, W. Ting, Z.X. Ju, L.Z. Dan, S.Z. Tan, Mater. Sci. Eng.B 176 (2011) 1222-1226. |
[29] |
H. Xiao, S. Liu, Mater. Des. 155 (2018) 19-35.
DOI URL |
[30] |
X. Cai, G.J. Dai, S.Z. Tan, Y. Ouyang, Y.S. Ouyang, Q.S. Shi, Mater. Lett. 67 (2012)199-201.
DOI URL |
[31] |
J. Veliscek-Carolan, A. Rawal, V. Luca, T.L. Hanley, Microporous Mesoporous Mater. 252 (2017) 90-104.
DOI URL |
[32] |
S. Ahad, A. Bashir, T. Manzoor, A.H. Pandith, RSC Adv. 6 (2016) 35914-35927.
DOI URL |
[33] |
A. Kanazawa, T. Ikeda, T. Endo, J. Polym. Sci. Part A: Polym. Chem. 31 (1993)3003-3011.
DOI URL |
[34] |
M. Prasad, S.P. Moulik, A. MacDonald, R. Palepu, J. Phys. Chem. B 108 (2004)355-362.
DOI URL |
[35] |
S.K. Shi, X.J. Zhang, S.P. Wang, L.N. Geng, J.J. Zhang, W. Chen, J. Am. Ceram. Soc. 98 (2015) 3836-3841.
DOI URL |
[36] |
D. Zhu, H. Cheng, J. Li, W. Zhang, Y. Shen, S. Chen, Z. Ge, S. Chen, Mater. Sci. Eng. C 61 (2016) 79-84.
DOI URL |
[37] |
C. Li, Y. Liu, Q.Y. Zeng, N.J. Ao, Mater. Lett. 93 (2013) 145-148.
DOI URL |
[38] |
Z. Wang, J. Li, J. Zhao, B. Xing, Environ. Sci. Technol. 45 (2011) 6032-6040.
DOI URL |
[39] |
A. Albanese, W.C.W. Chan, ACS Nano 5 (2011) 5478-5489.
DOI URL |
[40] |
J.J. Zhang, Q.A. Ji, P. Zhang, Y.Z. Xia, Q.S. Kong, Polym. Degrad. Stab. 95 (2010)1211-1218.
DOI URL |
[41] |
G. Santoro, M.A. Gomez, C. Marco, G. Ellis, Macromol. Mater. Eng. 295 (2010)652-659.
DOI URL |
[1] | Xuepeng Ni, Zhe Cui, Ning Jiang, Huifang Chen, Qilin Wu, Anqi Ju, Meifang Zhu. Hollow multi-nanochannel carbon nanofiber/MoS2 nanoflower composites as binder-free lithium-ion battery anodes with high capacity and ultralong-cycle life at large current density [J]. J. Mater. Sci. Technol., 2021, 77(0): 169-177. |
[2] | Mingjun Li, Christoph Schlaich, Jianguang Zhang, Ievgen S. Donskyi, Karin Schwibbert, Frank Schreiber, Yi Xia, Jörg Radnik, Tanja Schwerdtle, Rainer Haag. Mussel-inspired multifunctional coating for bacterial infection prevention and osteogenic induction [J]. J. Mater. Sci. Technol., 2021, 68(0): 160-171. |
[3] | Muhammad Ali Siddiqui, Ihsan Ullah, Hui Liu, Shuyuan Zhang, Ling Ren, Ke Yang. Preliminary study of adsorption behavior of bovine serum albumin (BSA) protein and its effect on antibacterial and corrosion property of Ti-3Cu alloy [J]. J. Mater. Sci. Technol., 2021, 80(0): 117-127. |
[4] | Tian Wan, Kangjie Chu, Ju Fang, Chuanxin Zhong, Yiwen Zhang, Xiang Ge, Yonghui Ding, Fuzeng Ren. A high strength, wear and corrosion-resistant, antibacterial and biocompatible Nb-5 at.% Ag alloy for dental and orthopedic implants [J]. J. Mater. Sci. Technol., 2021, 80(0): 266-278. |
[5] | Lin Tang, Junliang Zhang, Yusheng Tang, Jie Kong, Tianxi Liu, Junwei Gu. Polymer matrix wave-transparent composites: A review [J]. J. Mater. Sci. Technol., 2021, 75(0): 225-251. |
[6] | Diangeng Cai, Xiaotong Zhao, Lei Yang, Renxian Wang, Gaowu Qin, Da-fu Chen, Erlin Zhang. A novel biomedical titanium alloy with high antibacterial property and low elastic modulus [J]. J. Mater. Sci. Technol., 2021, 81(0): 13-25. |
[7] | Mi Wu, Wen Liu, Jinrong Yao, Zhengzhong Shao, Xin Chen. Silk microfibrous mats with long-lasting antimicrobial function [J]. J. Mater. Sci. Technol., 2021, 63(0): 203-209. |
[8] | Yuxuan Mao, Peng Li, Jiewei Yin, Yanjie Bai, Huan Zhou, Xiao Lin, Huilin Yang, Lei Yang. Starch-based adhesive hydrogel with gel-point viscoelastic behavior and its application in wound sealing and hemostasis [J]. J. Mater. Sci. Technol., 2021, 63(0): 228-235. |
[9] | Qian Wu, Xiangmei Liu, Bo Li, Lei Tan, Yong Han, Zhaoyang Li, Yanqin Liang, Zhenduo Cui, Shengli Zhu, Shuilin Wu, Yufeng Zheng. Eco-friendly and degradable red phosphorus nanoparticles for rapid microbial sterilization under visible light [J]. J. Mater. Sci. Technol., 2021, 67(0): 70-79. |
[10] | Mingjun Li, Li Nan, Chunyong Liang, Ziqing Sun, Lei Yang, Ke Yang. Antibacterial behavior and related mechanisms of martensitic Cu-bearing stainless steel evaluated by a mixed infection model of Escherichia coli and Staphylococcus aureus in vitro [J]. J. Mater. Sci. Technol., 2021, 62(0): 139-147. |
[11] | Jiajun Qiu, Lu Liu, Shi Qian, Wenhao Qian, Xuanyong Liu. Why does nitrogen-doped graphene oxide lose the antibacterial activity? [J]. J. Mater. Sci. Technol., 2021, 62(0): 44-51. |
[12] | Donglin Han, Yuan Li, Xiangmei Liu, Kelvin Wai Kwok Yeung, Yufeng Zheng, Zhenduo Cui, Yanqin Liang, Zhaoyang Li, Shengli Zhu, Xianbao Wang, Shuilin Wu. Photothermy-strengthened photocatalytic activity of polydopamine-modified metal-organic frameworks for rapid therapy of bacteria-infected wounds [J]. J. Mater. Sci. Technol., 2021, 62(0): 83-95. |
[13] | Li Liu, Wan Peng, Xiao Zhang, Jiangmei Peng, Pingsheng Liu, Jian Shen. Rational design of phosphonate/quaternary amine block polymer as an high-efficiency antibacterial coating for metallic substrates [J]. J. Mater. Sci. Technol., 2021, 62(0): 96-106. |
[14] | Mengyang Wang, Shichao Bi, Jianhui Pang, Zhongzheng Zhou, Di Qin, Honglei Wang, Xiaojie Cheng, Xiguang Chen. Precise quantification of the antibacterial activity of chitosan by NB medium neutralizer [J]. J. Mater. Sci. Technol., 2021, 70(0): 224-232. |
[15] | Yi Zou, Yanxia Zhang, Qian Yu, Hong Chen. Dual-function antibacterial surfaces to resist and kill bacteria: Painting a picture with two brushes simultaneously [J]. J. Mater. Sci. Technol., 2021, 70(0): 24-38. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||