J. Mater. Sci. Technol. ›› 2022, Vol. 122: 20-32.DOI: 10.1016/j.jmst.2022.01.008
• Review Article • Previous Articles Next Articles
Xinfeng Lia,*(), Jing Yina, Jin Zhangb,*(
), Yanfei Wangc,*(
), Xiaolong Songd, Yong Zhange, Xuechong Renf
Received:
2021-10-19
Revised:
2022-01-06
Accepted:
2022-01-11
Published:
2022-09-20
Online:
2022-03-09
Contact:
Xinfeng Li,Jin Zhang,Yanfei Wang
About author:
wyf_hg@cumt.edu.cn (Y. Wang).Xinfeng Li, Jing Yin, Jin Zhang, Yanfei Wang, Xiaolong Song, Yong Zhang, Xuechong Ren. Hydrogen embrittlement and failure mechanisms of multi-principal element alloys: A review[J]. J. Mater. Sci. Technol., 2022, 122: 20-32.
Fig. 1. The comparison of plasticity vs. tensile strength between multi-principal element alloys and traditional alloys, showing low plastic loss of multi-principal element alloys compared with traditional alloys under the same hydrogenated conditions. (a) High-entropy alloys (HEA). The data were marked by rectangle from Zhao et al. [45] and by upper triangular from Pu et al. [91]; (b) Medium-entropy alloy (MEA) [6].
Fig. 2. (a) The illustrations of a perfect BCC lattice in pure metals [2]; (b) A distorted BCC lattice in multicomponent alloys [2]; (c) Schematic of the lattice distortion with distorted octahedral interstitial sites (OIs) and tetrahedral interstitial sites (TIs) [31]; (d) 3D isosurface of electronic density [31].
Alloys | Dissolution energy (eV) | Barrier energy (eV) | Refs. | |
---|---|---|---|---|
Empty Cell | Octahedral Interstitial | Tetrahedral Interstitial | Empty Cell | Empty Cell |
CoCrFeMnNi (FCC) | 0.055, 0.402, 0.001, 0.624, 0.819 (0.38 ± 0.35)a | 0.898, 0.453, 0.027, 0.435, 0.268 (0.42 ± 0.32)a | 0.17-1.05 | [ |
CoCrFeNi (FCC) | (0.10 ± 0.03)a | (0.50 ± 0.06)a | - | [ |
CrFeMnMoCu (BCC) | 0.200, 0.158, 0.193, 0.003, 0.554, 0.223, 0.099, 0.221 (0.21 ± 0.16)a | 0.124, 0.237, 0.272, 0.433, 0.339, 0.436, 0.349, 0.570 (0.34 ± 0.14)a | 0.08-0.95 | [ |
Fe (BCC) | 0.33 | 0.20 | 0.088 | [ |
W (BCC) | 0.38 b | 0.21 | [ | |
Al (BCC) | 0.38 | -0.02 | - | [ |
Pd (FCC) | -0.16 | -0.02 | 0.39 | [ |
Ni (FCC) | - | - | 0.406 | [ |
Table 1. Dissolution energy of hydrogen in octahedral and tetrahedral interstitial as well as barrier energy of hydrogen jumping from interstitial sites of alloys.
Alloys | Dissolution energy (eV) | Barrier energy (eV) | Refs. | |
---|---|---|---|---|
Empty Cell | Octahedral Interstitial | Tetrahedral Interstitial | Empty Cell | Empty Cell |
CoCrFeMnNi (FCC) | 0.055, 0.402, 0.001, 0.624, 0.819 (0.38 ± 0.35)a | 0.898, 0.453, 0.027, 0.435, 0.268 (0.42 ± 0.32)a | 0.17-1.05 | [ |
CoCrFeNi (FCC) | (0.10 ± 0.03)a | (0.50 ± 0.06)a | - | [ |
CrFeMnMoCu (BCC) | 0.200, 0.158, 0.193, 0.003, 0.554, 0.223, 0.099, 0.221 (0.21 ± 0.16)a | 0.124, 0.237, 0.272, 0.433, 0.339, 0.436, 0.349, 0.570 (0.34 ± 0.14)a | 0.08-0.95 | [ |
Fe (BCC) | 0.33 | 0.20 | 0.088 | [ |
W (BCC) | 0.38 b | 0.21 | [ | |
Al (BCC) | 0.38 | -0.02 | - | [ |
Pd (FCC) | -0.16 | -0.02 | 0.39 | [ |
Ni (FCC) | - | - | 0.406 | [ |
Fig. 4. Energy barriers and transition state (TS) along multiple diffusion pathways. (a) H hopping via OI positions along the <100> direction, where TS1 and TS2 are located at TI positions, and TS3 is at an OI position [31]; (b) Hopping between OIs along the <110> direction [31]; (c) Hopping between TIs along the <110> direction [31]; (d) Hopping between TIs along the <100> direction, where TS1 and TS2 are located at OIs [31].
Fig. 5. Hydrogen atomic neighborhood for the six investigated systems, showing chemical complexity. (a) H-mix [47]; (b) H-Cr [47]; (c) H-Mn [47]; (d) H-Co [47]; (e) H-Fe [47]; (f) H-Ni sites [47]; (g) Example of a H-Fe configuration, the other H-Fe configurations also possess hydrogen surrounded by Fe, but the other atoms are differently distributed [47]; (h) The interaction energy promoted by H addition for H-M pairs [47].
Alloys | D0 (m2 s−1) | Diffusion activated energy (kJ mol−1) | Apparent diffusion coefficient (m2 s−1)a | Refs. |
---|---|---|---|---|
CoCrFeMnNic | 4.3 × 10−7 | 51.7 | 3.7 × 10−16 | [47] |
1.0 × 10−6 | 58.0 | 6.9 × 10−17 | [22]b | |
Fe22Mn40Ni30Co6Cr2 | 2.8 × 10−8 | 30.5 | 1.3 × 10−13 | [47] |
304 steelc | 2.7 × 10−6 | 54.4 | 8.0 × 10−16 | [46] |
8.9 × 10−7 | 53.9 | 3.2 × 10−16 | [56] | |
316 steelc | 6.2 × 10−7 | 53.6 | 2.5 × 10−16 | [57] |
1.2 × 10−5 | 63.1 | 1.1 × 10−16 | [58] | |
Pure Fec | 1.1 × 10−7 | 6.7 | 7.0 × 10−9 | [50] |
6.0 × 10−8 | 5.6 | 6.3 × 10−9 | [51] | |
Pure Nic | - | 30.0 | 3.0 × 10−12 | [54] |
7.5 × 10−7 | 39.1 | 1.1 × 10−13 | [52] |
Table 2. Hydrogen diffusion parameters of high-entropy alloys and traditional alloys.
Alloys | D0 (m2 s−1) | Diffusion activated energy (kJ mol−1) | Apparent diffusion coefficient (m2 s−1)a | Refs. |
---|---|---|---|---|
CoCrFeMnNic | 4.3 × 10−7 | 51.7 | 3.7 × 10−16 | [47] |
1.0 × 10−6 | 58.0 | 6.9 × 10−17 | [22]b | |
Fe22Mn40Ni30Co6Cr2 | 2.8 × 10−8 | 30.5 | 1.3 × 10−13 | [47] |
304 steelc | 2.7 × 10−6 | 54.4 | 8.0 × 10−16 | [46] |
8.9 × 10−7 | 53.9 | 3.2 × 10−16 | [56] | |
316 steelc | 6.2 × 10−7 | 53.6 | 2.5 × 10−16 | [57] |
1.2 × 10−5 | 63.1 | 1.1 × 10−16 | [58] | |
Pure Fec | 1.1 × 10−7 | 6.7 | 7.0 × 10−9 | [50] |
6.0 × 10−8 | 5.6 | 6.3 × 10−9 | [51] | |
Pure Nic | - | 30.0 | 3.0 × 10−12 | [54] |
7.5 × 10−7 | 39.1 | 1.1 × 10−13 | [52] |
Fig. 6. Thermal desorption spectroscopy curves of typically traditional fcc-microstructural alloys and CoCrFeMnNi HEA, showing the difference of the peak temperature. (a) 304 steel [61]; (b) 316L steel [61]; (c) Medium-manganese austenitic stainless steel [64], showing irreversible hydrogen traps; (d) CoCrFeMnNi [20], (e) CoCrFeMnNi [65] and (f) CoCrFeMnNi [17] HEA with a wide range of the peak temperature (100-410 °C).
Fig. 7. Effect of alloy elements on tensile mechanical properties of multi-principal element alloys. (a) N element (CoCrFeMnNi alloy) [10]; (b) B element (CoCrNi alloy) [32]; (c) Mn element (CoCrFeMnNi alloy) [79]; (d) Mo element (CoCrNi alloy) [33].
Fig. 8. Stress-strain curves of hydrogen uncharged and charged CoCrFeMnNi HEAs. (a) Hydrogen enhances yield strength and plasticity [70]; (b) Hydrogen has no effect on yield strength [9]; (c) Yield strength and plasticity decrease after hydrogenation [74].
Fig. 9. Hydrogen-assisted crack initiation and propagation sites of the HEAs. (a) Matrix/carbide interfaces [75]; (b) Grain boundary [74]; (c) Fcc-matrix/ε-martensite interfaces [27]; (d-f) Hydrogen-assisted cracking along (001) plane, bisecting two {111} planes [95].
Fig. 10. Comparison of the ruptured tensile bars of CoCrFeNi alloys in (a, c) uncharged sample [25] and (b, d) hydrogen-charged sample [25]. (e, f) Microstructure beneath of hydrogen-induced intergranular facet [25], showing dislocation cell and twin structure. (g) Histograms of the orientation deviation with respect to the mean orientation of select grains in uncharged and hydrogen-charged alloys [25].
Fig. 11. (a) EBSD band contrast map and (b) bright-field TEM image of cryogenic temperature caliber rolling (CTCRed) CoCrFeMnNi HEA [15], showing the activation of a number of twins; The comparison of stress-strain curves (c) and notch fracture stress (d) vs. diffusible hydrogen content of initial HEA, CTCRed HEA, tempered-martensitic steel and a 1.6 GP-grade pearlitic steel [15].
Fig. 12. Deformation micromechanisms in different regions of hydrogen charged CoCrFeMnNi HEA samples after cryo-deformation (77 K). (a) EBSD map showing the cross-section regions selected for further TEM analysis [9]. (b-d) Bright-field TEM, dark-field TEM, and selected area diffraction (SAD) pattern for a typical surface region [9]. (e-g) Bright-field TEM, dark-field TEM, and SAD pattern for a typical inner region. CH refers to the concentration of hydrogen [9].
[1] |
J.W. Yeh, Y.L. Chen, S.J. Lin, S.K. Chen, Mater. Sci. Forum 560 (2007) 1-9.
DOI URL |
[2] | Q. He, Y. Yang, Front. Mater. 5 (2018) 42. |
[3] | C. Lu, L. Niu, N. Chen, K. Jin, T. Yang, P. Xiu, Y. Zhang, F. Gao, H. Bei, S. Shi, Nat. Commun. 7 (2016) 1-8. |
[4] | Z. Lei, X. Liu, Y. Wu, H. Wang, S. Jiang, S. Wang, X. Hui, Y. Wu, B. Gault, P. kontis, Nature 563 (2018) 546-550 |
[5] |
J. Liu, X. Guo, Q. Lin, Z. He, X. An, L. Li, P.K. Liaw, X. Liao, L. Yu, J. Lin, Sci. China Mater. 62 (2019) 853-863.
DOI URL |
[6] |
H. Luo, S.S. Sohn, W. Lu, L. Li, X. Li, C.K. Soundararajan, W. Krieger, Z. Li, D. Raabe, Nat. Commun. 11 (2020) 1-8.
DOI URL |
[7] |
Y. Lu, H. Huang, X. Gao, C. Ren, J. Gao, H. Zhang, S. Zheng, Q. Jin, Y. Zhao, C. Lu, J. Mater. Sci. Technol. 35 (2019) 369-373.
DOI URL |
[8] | B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345 (2014) 1153-1158. |
[9] | H. Luo, W. Lu, X. Fang, D. Ponge, Z. Li, D. Raabe, Mater. Today 21 (2018) 1003-1009. |
[10] | E. Astafurova, M.Y. Panchenko, K. Reunova, A. Mikhno, V. Moskvina, E. Mel- nikov, S. Astafurov, H. Maier, Scr. Mater. 194 (2021) 113642. |
[11] | K. Bertsch, K. Nygren, S. Wang, H. Bei, A. Nagao, Corros. Sci. 184 (2021) 109407. |
[12] |
Z. Fu, B. Yang, M. Chen, G. Gou, H. Chen, Int. J. Hydrog. Energy 46 (2021) 6970-6978.
DOI URL |
[13] | Y.K. Kim, J.Y. Suh, K.A. Lee, Mater. Sci. Eng. A 796 (2020) 140039. |
[14] |
M. Koyama, K. Ichii, K. Tsuzaki, Int. J. Hydrog. Energy 44 (2019) 17163-17167.
DOI URL |
[15] |
Y.J. Kwon, J.W. Won, S.H. Park, J.H. Lee, K.R. Lim, Y.S. Na, C.S. Lee, Mater. Sci. Eng. A 732 (2018) 105-111.
DOI URL |
[16] |
J. Lee, H. Park, M. Kim, H.J. Kim, J.Y. Suh, N. Kang, Met. Mater. Int. 27 (2021) 166-174.
DOI URL |
[17] |
K. Nygren, K. Bertsch, S. Wang, H. Bei, A. Nagao, I. Robertson, Curr. Opin. Solid State Mater. Sci. 22 (2018) 1-7.
DOI URL |
[18] | D. Wang, X. Lu, Y. Deng, D. Wan, Z. Li, A. Barnoush, Intermetallics 114 (2019) 106605. |
[19] |
G. Yang, Y. Zhao, D.H. Lee, J.M. Park, M.Y. Seok, J.Y. Suh, U. Ramamurty, J. I. Jang, Scr. Mater. 161 (2019) 23-27.
DOI URL |
[20] |
Y. Zhao, D.H. Lee, J.A. Lee, W.J. Kim, H.N. Han, U. Ramamurty, J.Y. Suh, J.I. Jang, Int. J. Hydrog. Energy 42 (2017) 12015-12021.
DOI URL |
[21] |
X. Zhou, W.A. Curtin, Acta Mater. 200 (2020) 932-942.
DOI URL |
[22] |
Y.P. Xu, Y.M. Lyu, H.D. Liu, X.D. Pan, T. Lu, T. Zhu, H.S. Zhou, X.C. Li, Q. Xu, X. L. Wang, J. Nucl. Mater. 522 (2019) 41-44.
DOI URL |
[23] | H. Xiao, Q. Zeng, L. Xia, Z. Fu, S. Zhu, Mater. Corros. 73 (2022) 550-557. |
[24] | X. Zhou, A. Tehranchi, W.A. Curtin, Phys. Rev. Lett. 127 (2021) 175501. |
[25] |
K.E. Nygren, S. Wang, K.M. Bertsch, H. Bei, A. Nagao, I.M. Robertson, Acta Mater. 157 (2018) 218-227.
DOI URL |
[26] | S. Zhang, M. Liu, Y. Luo, L. Wang, Z. Wang, Z. Wang, F. Li, X. Wang, Mater. Sci. Eng. A 821 (2021) 141590. |
[27] | H. Luo, B. Zhao, Z. Pan, Y. Fu, X. Li, Mater. Sci. Eng. A 819 (2021) 141490. |
[28] | Z. Fu, P. Wu, S. Zhu, K. Gan, D. Yan, Z. Li, Corros. Sci. 194 (2022) 109933. |
[29] | X. Yang, Y. Yagodzinskyy, Y. Ge, E. Lu, J. Lehtonen, L. Kollo, S.P. Hannula, Met-als 11 (2021) 872. |
[30] | J. Hu, J. Zhang, H. Xiao, L. Xie, G. Sun, H. Shen, P. Li, J. Zhang, X. Zu, J. Alloy. Compd. 879 (2021) 160482. |
[31] |
X. Ren, P. Shi, W. Zhang, X. Wu, Q. Xu, Y. Wang, Acta Mater. 180 (2019) 189-198.
DOI URL |
[32] |
X. Chen, X. Zhuang, J. Mo, J. He, T. Yang, X. Zhou, W. Liu, Mater. Res. Lett. 10 (2022) 278-286.
DOI URL |
[33] | J. Yi, X. Zhuang, J. He, M. He, W. Liu, S. Wang, Corros. Sci. 189 (2021) 109628. |
[34] |
J. Shi, Y. Lei, N. Hashimoto, S. Isobe, Mater. Trans. 61 (2020) 616-621.
DOI URL |
[35] | Z. Xie, Y. Wang, C. Lu, L. Dai, Mater. Today Commun. 26 (2021) 101902. |
[36] |
W. Xing, X.Q. Chen, X. Li, Y. Ma, B. Chen, K. Liu, Int. J. Hydrog. Energy 45 (2020) 25555-25566.
DOI URL |
[37] |
E. Torres, J. Pencer, D. Radford, Comp. Mater. Sci. 152 (2018) 374-380.
DOI URL |
[38] |
Y. He, Y. Li, C. Chen, H. Yu, Int. J. Hydrog. Energy 42 (2017) 27438-27445.
DOI URL |
[39] |
D.R. Saravia, A. Juan, G. Brizuela, S. Simonetti, Int. J. Hydrog. Energy 34 (2009) 8302-8307.
DOI URL |
[40] |
S.B. Gesari, M.E. Pronsato, A. Juan, Int. J. Hydrog. Energy 34 (2009) 3511-3518.
DOI URL |
[41] |
P. Kamakoti, D.S. Sholl, J. Membr. Sci. 225 (2003) 145-154.
DOI URL |
[42] | K. Heinola, T. Ahlgren, J. Appl. Phys. 107 (2010) 113531. |
[43] | D. Jiang, E.A. Carter, Phys. Rev. B 70 (2004) 064102. |
[44] |
C. Zeng, J. Hu, C. Ouyang, J. Alloy. Compd. 509 (2011) 9214-9217.
DOI URL |
[45] |
Y. Zhao, D.H. Lee, M.Y. Seok, J.A. Lee, M. Phaniraj, J.Y. Suh, H.Y. Ha, J.Y. Kim, U. Ramamurty, J.I. Jang, Scr. Mater. 135 (2017) 54-58.
DOI URL |
[46] |
C. San Marchi, B.P. Somerday, S.L. Robinson, Int. J. Hydrog. Energy 32 (2007) 100-116.
DOI URL |
[47] | S.C. Marques, A.V. Castilho, D.S. dos Santos, Scr. Mater. 201 (2021) 113957. |
[48] |
M. Sahlberg, D. Karlsson, C. Zlotea, U. Jansson, Sci. Rep. 6 (2016) 1-6.
DOI URL |
[49] | Z.C. Xie, C. Li, H.Y. Wang, C. Lu, L.H. Dai, Int. J. Plasticity 139 (2021) 102944. |
[50] |
H. Hagi, Y. Hayashi, N. Ohtani, Trans. Jpn. Inst. Met. 20 (1979) 349-357.
DOI URL |
[51] | W. Beck, J.O.M. Bockris, J. McBreen, L. Nanis,Proc. R. Soc. Lond. Ser. A 290 (1966) 220-235. |
[52] |
S.M. Lee, J.Y. Lee, Metall. Trans. A 17 (1986) 181-187.
DOI URL |
[53] |
A. Brass, A. Chanfreau, Acta Mater. 44 (1996) 3823-3831.
DOI URL |
[54] |
T. Harris, M. Latanision, Metall. Trans. A 22 (1991) 351-355.
DOI URL |
[55] | X.Y. Zhou, J.H. Zhu, Y. Wu, X.S. Yang, T. Lookman, H.H. Wu, Acta Mater. 224 (2022) 117535. |
[56] |
W. Qu, C. Gu, J. Zheng, Y. Zhao, Z. Hua, Int. J. Hydrog. Energy 44 (2019) 8751-8758.
DOI URL |
[57] |
Y. Mine, T. Kimoto, Corros. Sci. 53 (2011) 2619-2629.
DOI URL |
[58] |
A.M. Brass, J. Chêne, Corros. Sci. 48 (2006) 3222-3242.
DOI URL |
[59] | X. Li, X. Ma, J. Zhang, E. Akiyama, Y. Wang, X. Song, Acta Metall. Sin. Engl. Lett. 33 (2020) 759-773. |
[60] |
M. Koyama, K. Habib, T. Masumura, T. Tsuchiyama, H. Noguchi, Int. J. Hydrog. Energy 45 (2020) 10209-10218.
DOI URL |
[61] |
Y. Luo, W. Li, L. Jiang, N. Zhong, X. Jin, Int. J. Hydrog. Energy 46 (2021) 32710-32722.
DOI URL |
[62] |
J. Bellemare, S. Laliberté-Riverin, D. Ménard, M. Brochu, F. Sirois, Metall. Mater. Trans. A 51 (2020) 3054-3065.
DOI URL |
[63] |
Z. Zhou, K. Zhang, Y. Hong, H. Zhu, W. Zhang, Y. He, C. Zhou, J. Zheng, L. Zhang, Int. J. Hydrog. Energy 46 (2021) 16153-16163.
DOI URL |
[64] |
T. Allam, X. Guo, M. Lipi ´nska-Chwałek, A. Hamada, E. Ahmed, W. Bleck, J. Mater. Res. Technol. 9 (2020) 13524-13538.
DOI URL |
[65] |
Y. Zhao, D.H. Lee, W.J. Kim, M.Y. Seok, J.Y. Kim, H.N. Han, J.Y. Suh, U. Rama- murty, J.I. Jang, Mater. Sci. Eng. A 718 (2018) 43-47.
DOI URL |
[66] |
L. Simoni, T. Falcade, D.C. Ferreira, C.E. Kwietniewski, Int. J. Hydrog. Energy 46 (2021) 25738-25751.
DOI URL |
[67] |
R. Shi, Y. Ma, Z. Wang, L. Gao, X.S. Yang, L. Qiao, X. Pang, Acta Mater. 200 (2020) 686-698.
DOI URL |
[68] | H.J. Seo, Y.U. Heo, J.N. Kim, J. Lee, S. Choi, C.S. Lee, Corros. Sci. 176 (2020) 108929. |
[69] | M. Okayasu, M. Sato, D. Ishida, T. Senuma, Mater. Sci. Eng. A 791 (2020) 139598. |
[70] | H. Luo, Z. Li, D. Raabe, Sci. Rep. 7 (2017) 9892. |
[71] | T. Zhu, Z. Zhong, X. Ren, Y. Song, F. Ye, Q. Wang, A.H. Ngan, B. Wang, X. Cao, Q. Xu, J. Alloy. Compd. 892 (2022) 162260. |
[72] | X. Li, W. Huang, X. Wu, J. Zhang, Y. Wang, E. Akiyama, D. Hou, Corros. Sci. 181 (2021) 109200. |
[73] |
K. Ichii, M. Koyama, C.C. Tasan, K. Tsuzaki, Scr. Mater. 150 (2018) 74-77.
DOI URL |
[74] |
H. Wang, M. Koyama, T. Hojo, E. Akiyama, Int. J. Hydrog. Energy 46 (2021) 33028-33038.
DOI URL |
[75] |
H. Luo, Z. Li, W. Lu, D. Ponge, D. Raabe, Corros. Sci. 136 (2018) 403-408.
DOI URL |
[76] |
X. Li, J. Zhang, Q. Fu, X. Song, S. Shen, Q. Li, Mater. Sci. Eng. A 724 (2018) 518-528.
DOI URL |
[77] | Z. Li, C.C. Tasan, H. Springer, B. Gault, D. Raabe, Sci. Rep. 7 (2017) |
[78] |
X. Li, J. Zhang, E. Akiyama, Q. Li, Y. Wang, Corros. Sci. 128 (2017) 198-212.
DOI URL |
[79] |
M. Koyama, H. Wang, V.K. Verma, K. Tsuzaki, E. Akiyama, Metall. Mater. Trans. A 51 (2020) 5612-5616.
DOI URL |
[80] | Z. Fu, B. Yang, K. Gan, D. Yan, Z. Li, G. Gou, H. Chen, Z. Wang, Corros. Sci. 190 (2021) 109695. |
[81] |
Y. Mine, N. Horita, Z. Horita, K. Takashima, Int. J. Hydrog. Energy 42 (2017) 15415-15425.
DOI URL |
[82] |
C. Park, N. Kang, S. Liu, Corros. Sci. 128 (2017) 33-41.
DOI URL |
[83] | A. Macadre, T. Tsuchiyama, S. Takaki, Materialia 8 (2019) 100514. |
[84] |
A. Laureys, E. Van den Eeckhout, R. Petrov, K. Verbeken, Acta Mater. 127 (2017) 192-202.
DOI URL |
[85] |
F. Otto, A. Dlouhý, K.G. Pradeep, M. Kub ˇenová, D. Raabe, G. Eggeler, E.P. George, Acta Mater. 112 (2016) 40-52.
DOI URL |
[86] | H. Song, M. Jo, D.W. Kim, Mater. Sci. Eng. A 817 (2021) 141347. |
[87] |
K. Ichii, M. Koyama, C.C. Tasan, K. Tsuzaki, Procedia Struct. Integr. 13 (2018) 716-721.
DOI URL |
[88] |
Y. Zhao, J.M. Park, D.H. Lee, E.J. Song, J.Y. Suh, U. Ramamurty, J.I. Jang, Scr. Mater. 168 (2019) 76-80.
DOI URL |
[89] |
Y. Momotani, A. Shibata, D. Terada, N. Tsuji, Int. J. Hydrog. Energy 42 (2017) 3371-3379.
DOI URL |
[90] | C.K. Soundararajan, H. Luo, D. Raabe, Z. Li, Corros. Sci. 167 (2020) 108510. |
[91] |
Z. Pu, Y. Chen, L. Dai, Mater. Sci. Eng. A 736 (2018) 156-166.
DOI URL |
[92] |
D. Wang, X. Lu, M. Lin, D. Wan, Z. Li, J. He, R. Johnsen, J. Mater. Sci. Technol. 98 (2022) 118-122.
DOI URL |
[93] |
M. Koyama, T. Eguchi, K. Ichii, C.C. Tasan, K. Tsuzaki, Procedia Struct. Integr. 13 (2018) 292-297.
DOI URL |
[94] | X. Li, Z. Feng, X. Song, Y. Wang, Y. Zhang, Corros. Sci. 198 (2022) 110073. |
[95] | X. Lu, D. Wang, Z. Li, Y. Deng, A. Barnoush, Mater. Sci. Eng. A 762 (2019) 138114. |
[96] |
D. Wan, S. Guan, D. Wang, X. Lu, J. Ma, Corros. Sci. 195 (2022) 110007.
DOI URL |
[97] | Y.J. Kwon, S.P. Jung, B.J. Lee, C.S. Lee, Int. J. Hydrogen Energy 43 (2018) 10129-10140. |
[98] |
S. Bechtle, M. Kumar, B.P. Somerday, M.E. Launey, R.O. Ritchie, Acta Mater. 57 (2009) 4148-4157.
DOI URL |
[99] |
M. Masoumi, L.P. Santos, I.N. Bastos, S.S. Tavares, M.J. da Silva, H.F. de Abreu, Mater. Des. 91 (2016) 90-97.
DOI URL |
[100] | J. Li,The Contribution of the Grain Boundary Engineering to the Problem of Intergranular Hydrogen Embrittlement, University of La Rochelle, 2017 Ph. D. Thesis. |
[101] | M. Razmpoosh, A. Macwan, F. Goodwin, E. Biro, Y. Zhou, Materialia 11 (2020) 100668. |
[102] | K. Godbole, C. Das, S. Albert, B.B. Panigrahi, Mater. Lett. 264 (2020) 127321. |
[103] |
S. Kobayashi, W. Yang, Y. Tomobe, R. Okada, S. Tsurekawa, J. Mater. Sci. 55 (2020) 9273-9285.
DOI URL |
[104] |
T. Liu, Q. Bai, X. Ru, S. Xia, X. Zhong, Y. Lu, T. Shoji, Mater. Sci. Technol. 35 (2019) 477-487.
DOI URL |
[105] |
F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, E.P. George, Acta Mater. 61 (2013) 5743-5755.
DOI URL |
[106] |
S. Huang, W. Li, S. Lu, F. Tian, J. Shen, E. Holmström, L. Vitos, Scr. Mater. 108 (2015) 44-47.
DOI URL |
[107] |
S. Curtze, V.T. Kuokkala, Acta Mater. 58 (2010) 5129-5141.
DOI URL |
[108] |
D.T. Pierce, J.A. Jiménez, J. Bentley, D. Raabe, C. Oskay, J. Wittig, Acta Mater. 68 (2014) 238-253.
DOI URL |
[109] |
A. Saeed-Akbari, J. Imlau, U. Prahl, W. Bleck, Metall. Mater. Trans. A 40 (2009) 3076-3090.
DOI URL |
[110] |
L. Mosecker, D. Pierce, A. Schwedt, M. Beighmohamadi, J. Mayer, W. Bleck, J. Wittig, Mater. Sci. Eng. A 642 (2015) 71-83.
DOI URL |
[111] |
X. Tian, Y. Zhang, Mater. Sci. Eng. A 516 (2009) 73-77.
DOI URL |
[112] |
J. Hermida, A. Roviglione, Scr. Mater. 39 (1998) 1145-1149.
DOI URL |
[113] | J.H. Ryu,Hydrogen Embrittlement in TRIP and TWIP Steels, Pohang University of Science and Technology, 2012 Ph. D. Thesis. |
[114] |
D. Wang, X. Lu, D. Wan, Z. Li, A. Barnoush, Scr. Mater. 173 (2019) 56-60.
DOI URL |
[115] |
S.M. Lee, I.J. Park, J.G. Jung, Y.K. Lee, Acta Mater. 103 (2016) 264-272.
DOI URL |
[116] |
M. Koyama, S. Okazaki, T. Sawaguchi, K. Tsuzaki, Metall. Mater. Trans. A 47 (2016) 2656-2673.
DOI URL |
[1] | T. Fang X., K. Li Z., F. Wang Y., M. Ruiz, L. Ma X., Y. Wang H., Y. Zhu, R. Schoell, C. Zheng, D. Kaoumi, T. Zhu Y.. Achieving high hetero-deformation induced (HDI) strengthening and hardening in brass by dual heterostructures [J]. J. Mater. Sci. Technol., 2022, 98(0): 244-247. |
[2] | Huang Chunping, Liang Renyu, Liu Fenggang, Yang Haiou, Lin Xin. Effect of dimensionless heat input during laser solid forming of high-strength steel [J]. J. Mater. Sci. Technol., 2022, 99(0): 127-137. |
[3] | Yang Jianyan, Ren Weijun, Zhao Xinguo, Kikuchi Tatsuya, Miao Ping, Nakajima Kenji, Li Bing, Zhang Zhidong. Mictomagnetism and suppressed thermal conduction of the prototype high-entropy alloy CrMnFeCoNi [J]. J. Mater. Sci. Technol., 2022, 99(0): 55-60. |
[4] | Yijing Wang, Enkang Hao, Xiaoqin Zhao, Yun Xue, Yulong An, Huidi Zhou. Effect of microstructure evolution of Ti6Al4V alloy on its cavitation erosion and corrosion resistance in artificial seawater [J]. J. Mater. Sci. Technol., 2022, 100(0): 169-181. |
[5] | Kaiju Lu, Ankur Chauhan, Dimitri Litvinov, Aditya Srinivasan Tirunilai, Jens Freudenberger, Alexander Kauffmann, Martin Heilmaier, Jarir Aktaa. Micro-mechanical deformation behavior of CoCrFeMnNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 100(0): 237-245. |
[6] | Wei Zhang, Zhichao Ma, Chaofan Li, Chaowei Guo, Dongni Liu, Hongwei Zhao, Luquan Ren. Micro/nano-mechanical behaviors of individual FCC, BCC and FCC/BCC interphase in a high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 114(0): 102-110. |
[7] | Zhengyi Mao, Mengke Huo, Fucong Lyu, Yongsen Zhou, Yu Bu, Lei Wan, Lulu Pan, Jie Pan, Hui Liu, Jian Lu. Nacre-liked material with tough and post-tunable mechanical properties [J]. J. Mater. Sci. Technol., 2022, 114(0): 172-179. |
[8] | Xin-Yu Mao, Xiao-Lei Shi, Liang-Chuang Zhai, Wei-Di Liu, Yue-Xing Chen, HanGao , Meng Li, De-Zhuang Wang, Hao Wu, Zhuang-Hao Zheng, Yi-Feng Wang, Qingfeng Liu, Zhi-Gang Chen. High thermoelectric and mechanical performance in the n-type polycrystalline SnSe incorporated with multi-walled carbon nanotubes [J]. J. Mater. Sci. Technol., 2022, 114(0): 55-61. |
[9] | Seyed Amir Arsalan Shams, Jae Wung Bae, Jae Nam Kim, Hyoung Seop Kim, Taekyung Lee, Chong Soo Lee. Origin of superior low-cycle fatigue resistance of an interstitial metastable high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 115(0): 115-128. |
[10] | Dong Wu, Wenya Li, Kun Liu, Yang Yang, Sijie Hao. Optimization of cold spray additive manufactured AA2024/Al2O3 metal matrix composite with heat treatment [J]. J. Mater. Sci. Technol., 2022, 106(0): 211-224. |
[11] | Xue Yan, Cheng Zhang, Yangshuai Li, Youjian Yi, Ziruo Cui, Bingyuan Han. Laser-induced topology optimized amorphous nanostructure and corrosion electrochemistry of supersonically deposited Ni30Cr25Al15Co15Mo5Ti5Y5 HEA coating based on AIMD [J]. J. Mater. Sci. Technol., 2022, 106(0): 257-269. |
[12] | Wu Qi, Wenrui Wang, Xiao Yang, Lu Xie, Jiaming Zhang, Dongyue Li, Yong Zhang. Effect of Zr on phase separation, mechanical and corrosion behavior of heterogeneous CoCrFeNiZrx high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 109(0): 76-85. |
[13] | Yupeng Diao, Luchun Yan, Kewei Gao. A strategy assisted machine learning to process multi-objective optimization for improving mechanical properties of carbon steels [J]. J. Mater. Sci. Technol., 2022, 109(0): 86-93. |
[14] | Sibing Wang, Wenchen Xu, Bin Shao, Guoping Yang, Yingying Zong, Wanting Sun, Zhongze Yang, Debin Shan. Process design and microstructure-property evolution during shear spinning of Ti2AlNb-based alloy [J]. J. Mater. Sci. Technol., 2022, 101(0): 1-17. |
[15] | Wei Wu, Wanjing Zhao, Xianjing Gong, Qijun Sun, Xianwu Cao, Yujun Su, Bin Yu, Robert K.Y. Li, Roy A.L. Vellaisamy. Surface decoration of Halloysite nanotubes with POSS for fire-safe thermoplastic polyurethane nanocomposites [J]. J. Mater. Sci. Technol., 2022, 101(0): 107-117. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||