J. Mater. Sci. Technol. ›› 2022, Vol. 120: 15-35.DOI: 10.1016/j.jmst.2021.10.057
• Research Article • Previous Articles Next Articles
L.G. Houa,b,d,*(), H. Yuc, Y.W. Wanga, L. Youa, Z.B. Hea, C.M. Wud, D.G. Eskinb,e,*(
), L. Katgermanf,g, L.Z. Zhuanga,*(
), J.S. Zhanga
Received:
2021-08-25
Revised:
2021-10-21
Accepted:
2021-10-21
Published:
2022-09-01
Online:
2022-03-09
Contact:
L.G. Hou,D.G. Eskin,L.Z. Zhuang
About author:
lingzhongzhuang@yahoo.com (L.Z. Zhuang).L.G. Hou, H. Yu, Y.W. Wang, L. You, Z.B. He, C.M. Wu, D.G. Eskin, L. Katgerman, L.Z. Zhuang, J.S. Zhang. Tailoring precipitation/properties and related mechanisms for a high-strength aluminum alloy plate via low-temperature retrogression and re-aging processes[J]. J. Mater. Sci. Technol., 2022, 120: 15-35.
Fig. 2. Intragranular precipitates (a, c, e, g), related selected area electron diffraction (SAED) patterns (b, d, f) and HREM images (h-j) of the T6- (a, b) and T77-treated alloys: (c, d) T77 (200 °C/5 min), (e-g, h-j) T77 (200 °C/40 min). Fast Fourier Transform (FFT) images of regions 1-6 in (h-j) correspond to 1-FFT to 6-FFT, respectively. The IFFT images of regions 1, 2 and 3 are also given. (i1) after adjusting brightness and gamma values of IFFT image of region 3 that can display bright contrast. The diffraction spots of Al3Zr phase with L12 superlattice structure also appear in (b, d, f).
Fig. 3. Intragranular precipitates in the MT77 (155 °C/300 min) alloy: (a, b) TEM image, (c, d) SADE pattern, (e-g) HREM images. (e1) FFT images of the white region in (e), (e2) masked FFT image of GP II zone in (e), (e3) IFFT images of GP I zone in (e), (e4) IFFT images of (e3), (f1) FFT images of white region in (f). (g1) FFT image of η’ phase in (g), (g2) and (g3) are IFFT images along g(11$\bar{1}$)Al and g($\bar{2}$$\bar{2}$0)Al of (g1), (g4) IFFT image of (g1). The FFT/IFFT images of white regions 1-4 in (g) are shown with corresponding numbers. The yellow-marked precipitates also display similar morphology with white region 3 in (g).
Fig. 4. Intragranular precipitates in the MT77 (165 °C/300 min) alloy: (a, b) TEM image, (c-e) SADE patterns, (f-h) HREM images of the precipitates. FFT images of (f, g) are inserted. (g1) IFFT images of (g) with removing Al matrix (FFT image as inserted), (g2) after adjusting image parameters (Brightness=0.43, Contrast=0.67, Gamma=0.71) of (g1) that can display bright contrast (marked FFT image as inserted). (g3) and (g5) are the IFFT images of region 4 and 5 in (g), respectively. (g4) and (g6): after adjusting brightness and gamma values of (g3) and (g5), respectively. (h1) IFFT image based on marked FFT image (as inserted) of region 6, (h2) IFFT image of region 6, (h3) after adjusting brightness and gamma values of (h2).
Fig. 5. TEM (a-c), SADE patterns (d-f) and HREM (g-i) images of the MT77 (175 °C/300 min) alloy. (g1) IFFT image of (g, FFT image as inserted) after adjusting image parameters (Brightness=0.47, Contrast=0.67, Gamma=0.69), (h1) IFFT image of (h, FFT image as inserted) after adjusting image parameters (Brightness=0.43, Contrast=0.65, Gamma=0.69), (i1) IFFT images of (i) with removing Al matrix (FFT image as inserted), (i2) marked FFT image of FFT image in (i4) from the white region in (i), (i3) IFFT image from (i2), (i5) IFFT image from the marked FFT image (as inserted) along [$\bar{2}$40]Al direction.
Fig. 6. TEM (a-c, a: bright field, b: dark field) and HREM (g-j) images of the MT77 (160 °C/600 min) alloy. (d-f) SADE patterns, (g1) IFFT images of (g, FFT image as inserted) with removing Al matrix, (g2, g5, h1, h4) FFT images of regions 1-4 in (g, h), (g3, g6, h2, h5) IFFT images of regions 1-4 in (g, h) (marked FFT images as inserted), (g4, g7, h3, h6) IFFT image of regions 1-4 in (g, h) after adjusting image parameters (Brightness=0.47, Contrast=0.66, Gamma=0.68). (i1) IFFT images of the precipitate in (i, FFT image as inserted), (i2) IFFT image after adjusting image parameters of (i1), (j1) and (j2) are the FFT images of regions 5 and 6 in (j), respectively.
Fig. 7. TEM (a-d, b is dark-field image) and HREM (g, j) images of the MT77 (165 °C/600 min) alloy. (d, e, f) SADE patterns. The FFT and IFFT images of upper and bottom white regions in (g) are shown at right; (i) FFT image of (h); the FFT and IFFT images of regions 1 and 2 are shown at right.
Fig. 8. TEM (a, b), SADE (c-e) patterns and HREM (f-j) images of the MT77 (175 °C/600 min) alloy. (f1) IFFT images of (f) with removing Al matrix (FFT image in (f2)), (f3) and (f4) are the FFT image of regions 2 and 1 in (f), respectively. (f5) IFFT image of (f4) (Brightness=0.49, Contrast=0.67, Gamma=0.64). (g1) IFFT images of (g) with removing Al matrix (FFT image as inserted in (g)), (g2) IFFT image of region 3 in (g1) (FFT image as inserted), (g3) IFFT image of region 3 in (g1) after adjusting image parameters (Brightness=0.42, Contrast=0.56, Gamma=0.68). (h1) IFFT image of (h, FFT image as inserted) after adjusting image parameters (marked FFT image as inserted in (h1). (i1) and (j1) are FFT images of (i) and (j), respectively. (i2) FFT image of region 4 in (i).
Fig. 10. GPBs and PFZs near GBs in the T6-, T77- and MT77-treated alloys. A high magnification GB image of MT77 (200 °C/40 min) alloy and GBPs possibly along high angle grain boundaries (HAGBs) of MT77 (165 °C/600 min) alloy are shown.
Fig. 12. Intragranular and intergranular precipitates (a, b, f, g) and SAED patterns (c-e, h-j) near the plate surface (a-e) and center (f-m) of the MT77-treated 7050 Al alloy plate. (k, m) HREM images, (l) FFT image of coarse precipitate in (k).
Fig. 13. Temperature-time transformation of precipitates in Al-Zn-Mg-(Cu) 7XXX-series alloys (single-step aging data are collected from published data) (the inset shows the possible transformation sequence with changing temperatures and times according to ref. [67]).
Fig. 14. TEM (a), SADE (b-d) patterns and HREM (e-g) images of the 120 °C/300 min aged alloy. The FFT or IFFT images of region 1-3 are marked with corresponding numbers.
Fig. 16. Schematical evolution of strength during retrogression and T6 re-aging treatments (a), and aging temperature and time ranges of typical two-step aging and RRA processes: (b) first and/or third steps (the dark area represents the first and/or third step aging parameters), (c) second or retrogression step of different RRA processes.
Fig. 17. TEM (a), SADE patterns (b-d) and HREM (e-g) images of the 165 °C/600 min retrogressed alloy with the first-step 120 °C/300 min aging. (g1) and (g2) are the FFT and IFFT images of the white-box area in (g), respectively. FFT images of other white-box areas are shown with corresponding numbers.
[1] |
M.E. Fine, Metall. Trans. A 6 (1975) 625-630.
DOI URL |
[2] |
J.K. Park, Metall. Trans. A 14 (1983) 1957-1965.
DOI URL |
[3] | J. Lendvai, Mater. Sci. Forum 217-222 (1996) 43-56. |
[4] |
T. Marlaud, A. Deschamps, F. Bley, W. Lefebvre, B. Baroux, Acta Mater 58 (2010) 248-260.
DOI URL |
[5] |
D.M. Liu, B.Q. Xiong, F.G. Bian, Z.H. Li, X.W. Li, Y.A. Zhang, F. Wang, H.W. Liu, Mater. Sci. Eng. A 588 (2013) 1-6.
DOI URL |
[6] | S.J. Andersen, C.D. Marioara, J. Friis, S. Wenner, R. Holmestad, Adv. Phys. X 3 (1) (2018) 1479984. |
[7] |
M.O. Spiedel, Metall. Trans. A 6 (1975) 631-651.
DOI URL |
[8] |
M. Puiggali, A. Zienlinski, J.M. Olive, E. Renauld, D. Desjardins, M. Cid, Corros. Sci. 40 (1998) 805-819.
DOI URL |
[9] |
S. Osaki, D. Itoh, M. Nakai, J. Japan Inst. Light Metals 51 (2001) 222-227.
DOI URL |
[10] |
F. Andreatta, H. Terryn, J.H.W. de Wit, Electrochim. Acta 49 (2004) 2851-2862.
DOI URL |
[11] |
T. Marlaud, B. Malki, C. Henon, A. Deschamps, B. Baroux, Corr. Sci. 53 (2011) 3139-3149.
DOI URL |
[12] | M.U. Islam, W. Wallace, Met. Sci. J. 11 (1984) 320-322. |
[13] | J.A. Nock, Pa. Tarentum, US 2248185 (Jul. 8, 1941). |
[14] | D.O. Sprowls, J.A. Nock, US 3198676 (Aug. 3, 1965). |
[15] | B. Cina, R. Gan, US 3856584, Dec. (1974). |
[16] | R.S. Kaneko, Metal Prog 117 (1980) 41-43. |
[17] | R.T. Holt, V.R. Parameswaran, W. Wallace, Cana. Aeronautics Space J. 42 (1996) 83-87. |
[18] |
Y.C. Yang, L.F. Cao, X.D. Wu, X. Tong, B. Liao, G.J. Huang, Z.A. Wang, J. Alloy. Compd. 814 (2020) 152264.
DOI URL |
[19] | O.S. Es-Said, W.E. Frazier, E.W. Lee, JOM 1 (2003) 45-48. |
[20] | R. Ranganatha, P. Raghothanma Rao, R.R. Bhat, B.K. Muralidhara, Int. J. Eng. Res. Sci. Technol. 3 (2011) 5646-5651. |
[21] |
H. Zhao, B. Gault, D. Ponge, D. Raabe, Scr. Mater. 188 (2020) 269-273.
DOI URL |
[22] |
M.S. Nandana, B.K. Udaya, C.M. Manjunatha, Fatigue Fract. Eng. Mater. Struct. 42 (2019) 719-731.
DOI URL |
[23] | J. Liu, M.M. Kersker, US 5108520 (Apr. 28, 1992). |
[24] | W.H. Hunt, J.T. Staley, D.A. Kukasak, D.B. Reiser, R.K. Wyss, L.M. Angers, US 5221377 (Jun. 22, 1993). |
[25] | E. Oswald, R.W. Westerlund, US 2003/0051784 A1 (Mar. 20, 2003). |
[26] |
M. Talianker, B. Cina, Metall. Trans. A 20 (1989) 2087-2092.
DOI URL |
[27] |
J.K. Park, A.J. Ardell, Metall. Trans. A 15 (1984) 1531-1543.
DOI URL |
[28] |
J.K. Park, Mater. Sci. Eng. A 103 (1988) 223-231.
DOI URL |
[29] |
A.F. Oliveira, M.C. de Barros, K.R. Cardoso, D.N. Travessa, Mater. Sci. Eng. A 379 (2004) 321-326.
DOI URL |
[30] |
N.C. Danh, K. Rajan, W. Wallace, Metall. Mater. Trans. A 14 (1983) 1843-1850.
DOI URL |
[31] |
Z.H. Li, B.Q. Xiong, Y.A. Zhang, B.H. Zhu, F. Wang, H.W. Liu, J. Mater. Process. Technol. 209 (2009) 2021-2027.
DOI URL |
[32] | G.S. Peng, K.H. Chen, S.Y. Chen, H.C. Fang, Mater. Corros. 62 (2011) 1-6. |
[33] |
G.S. Peng, K.H. Chen, S.Y. Chen, H.C. Fang, Mater. Sci. Eng. A 528 (2011) 4014-4018.
DOI URL |
[34] |
Y. Reda, R. Abdel-Karim, I. Elmahallawi, Mater. Sci. Eng. A 485 (2008) 468-475.
DOI URL |
[35] | C.P. Ferrer, M.G. Koul, B.J. Connolly, A.L. Moran, Corrosion 6 (2003) 520-528. |
[36] |
T. Marlaud, A. Deschamps, F. Bley, W. Lefebvre, B. Baroux, Acta Mater 58 (2010) 4814-4826.
DOI URL |
[37] | T. Ramgopal, P.I. Gouma, G.S. Frankel, Corrosion 58 (2002) 687-697. |
[38] |
S. Maitra, G.C. English, Metall. Trans. A 12 (1981) 535-541.
DOI URL |
[39] | Q.J. Meng, G.S. Frankel, J. Electrochem. Soc. 151 (2004) B271-B283. |
[40] |
X.Y. Zhao, G.S. Frankel, Corros. Sci. 49 (2007) 920-938.
DOI URL |
[41] | R.K. Gutpa, A. Deschamps, M.K. Cavanaugh, S.P. Lynch, N. Birbilis, J. Elec- trochem. Soc. 159 (2012) 492-502. |
[42] |
P. Guyot, L. Cottignies, Acta Mater 44 (10) (1996) 4161-4167.
DOI URL |
[43] |
M.J. Starink, X.M. Li, Metall. Mater. Trans. A 34 (4) (2003) 899-911.
DOI URL |
[44] | T.C. Tsai, T.H. Chuang, Corrosion 52 (6) (1996) 414-416. |
[45] |
J.K. Park, A.J. Ardell, Acta Metall. Mater. 39 (4) (1991) 591-598.
DOI URL |
[46] | D. Raizenne, X. Wu, Corrosion control using retrogression and re-gaing (RRA). in: Corrosion fatigue and environmentally assisted cracking in aging military vehicles, RTO-AG-AVT-140 (Mar. 2011). |
[47] |
A.J. Hillel, P.L. Rossiter, Philos. Mag. B 44 (3) (1981) 383-388.
DOI URL |
[48] | J. Telesman, NASA Tech. Memo. 83626 (1984) 1-36 Apr.. |
[49] |
J.D. Robson, Mater. Sci. Eng. A 382 (2004) 112-121.
DOI URL |
[50] |
X.Z. Li, V. Hansen, J. Gjonnes, L.R. Wallenberg, Acta Mater 47 (9) (1999) 2651-2659.
DOI URL |
[51] |
Y.Y. Li, L. Kovarik, P.J. Phillips, Y.F. Hsu, W.H. Wang, M.J. Mills, Phil. Mag. Lett. 92 (4) (2012) 166-178.
DOI URL |
[52] |
R. Goswami, S. Lynch, N.J. Henry Holroyd, S.P. Knight, R.L. Holtz, Metall. Mater. Trans. A 44 (2013) 1268-1278.
DOI URL |
[53] |
A. Bendo, K. Matsuda, S. Lee, K. Nishimura, N. Nunomura, H. Toda, M. Ya- maguchi, T. Tsuru, K. Hirayama, K. Shimizu, H. Gao, K. Ebihara, M. Itakura, T. Yoshida, S. Murakami, J. Mater. Sci. 53 (2018) 4598-4611.
DOI URL |
[54] |
T.F. Chung, Y.L. Yang, B.M. Huang, Z.S. Shi, J.G. Lin, T. Ohmura, J.R. Yang, Acta Mater 149 (2018) 377-387.
DOI URL |
[55] |
L.K. Berg, J. Gjonnes, V. Hansen, X.Z. Li, M. Knutson-Wedel, G. Waterloo, D. Schryvers, L.R. Wallenberg, Acta Mater 49 (2001) 3443-3451.
DOI URL |
[56] |
J. Gjønnes, C. Simensen, Acta Metall 18 (8) (1970) 881-890.
DOI URL |
[57] |
M.C. Carroll, P.I. Gouma, M.J. Mills, G.S. Daehn, B.R. Dunbar, Scr. Mater. 42 (2000) 335-340.
DOI URL |
[58] | http://som.web.cmu.edu/frames2.html |
[59] |
T.F. Chung, Y.L. Yang, M. Shiojiri, C.N. Hsiao, W.C. Li, C.S. Tsao, Z.S. Shi, J.G. Lin, J.R. Yang, Acta Mater 174 (2019) 351-368.
DOI URL |
[60] |
J.Z. Liu, J.H. Chen, X.B. Yang, S. Ren, C.L. Wu, H.Y. Xu, J. Zou, Scr. Mater. 63 (2010) 1061-1064.
DOI URL |
[61] |
A. Joshi, C.R. Shastry, M. Levy, Metall. Trans. A 12 (1981) 1081-1088.
DOI URL |
[62] |
J. Albrecht, A.W. Thompson, I.M. Bernstein, Metall. Trans. A 10 (1979) 1759-1766.
DOI URL |
[63] |
B. Morere, J.C. Ehrström, P.J. Gregson, I. Sinclair, Metall. Mater. Trans. A 31 (10) (2000) 2503-2515.
DOI URL |
[64] | Alcoa mill products, Alloy 7050 plate and sheet (2022) https://www.yumpu.com/en/document/read/11385307/alloy-7050-plate-and-sheet-alcoa. |
[65] |
V. Hansen, O.B. Karlsen, Y. Langsrud, J. Gjønnes, Mater. Sci. Technol. 20 (2004) 185-193.
DOI URL |
[66] |
A.K. Mukhopadhyay, K.S. Prasad, Philos. Mag. Lett. 91 (2011) 214-222.
DOI URL |
[67] |
J.C. Werenskiold, A. Deschamps, Y. Bréchet, Mater. Sci. Eng. A 293 (2000) 267-274.
DOI URL |
[68] |
G. Sha, A. Cerezo, Acta Mater 52 (2004) 4503-4516.
DOI URL |
[69] |
D. Liu, B. Xiong, F. Bian, Z. Li, X. Li, Y. Zhang, Q. Wang, G. Xie, F. Wang, H. Liu, Mater. Sci. Eng. A 639 (2015) 245-251.
DOI URL |
[70] |
R. Gronsky, P. Furrer, Metall. Trans. A 12 (1981) 121-127.
DOI URL |
[71] |
N.U. Deshpande, A.M. Gokhale, D.K. Denzer, J. Liu, Metall. Mater. Trans. A 29 (1998) 1191-1201.
DOI URL |
[72] |
B. Cai, B.L. Adams, T.W. Nelson, Acta Mater 55 (2007) 1543-1553.
DOI URL |
[73] |
R.G. Buchheit, J. Electrochem. Soc. 142 (11) (1995) 3994-3996.
DOI URL |
[74] | N. Birbilis, R.G. Buchheit, J. Electrochem. Soc. 152 (2005) B140-B151. |
[75] |
S.P. Knight, N. Birbilis, B.C. Muddle, A.R. Trueman, S.P. Lynch, Corros. Sci. 52 (2010) 4073-4080.
DOI URL |
[76] | The aluminium association, international alloy designations and chemical composition limits for wrought aluminium and wrought aluminium alloys, Jan., 2015. |
[77] | European Aviation Safety Agency (EASA), Environmentally assisted cracking in certain aluminium alloys, Safety Information Bulletin 2018-04 R1 (2018) https://ad.easa.europa.eu/ad/2018-04R1. |
[78] |
U. De Francisco, N.O. Larrosa, M.J. Peel, Mater. Sci. Eng. A 772 (2020) 138662.
DOI URL |
[79] |
B.L. Ou, J.G. Yang, M.Y. Wei, Metall. Mater. Trans. A 38 (2007) 1760-1773.
DOI URL |
[80] |
M.S. Bhuiyan, H. Toda, Z. Peng, S. Hang, K. Horikawa, K. Uesugi, A. Takeuchi, N. Sakaguchi, Y. Watanabe, Mater. Sci. Eng. A 655 (2016) 221-228.
DOI URL |
[81] |
P.N. Adler, R. DeIASI, G. Geschwind, Metall. Trans. 3 (1972) 3191-3200.
DOI URL |
[82] |
T. Ohnishi, Y. Ibaraki, J. Japan Inst. Light Metals 40 (1990) 82-87.
DOI URL |
[83] | S.J. Murtha, US 5496426 (1996). |
[84] | J.T. Jiang, Q.J. Tang, L. Yang, K. Zhang, S.J. Yuan, L. Zhen, J. Mater. Proc. Technol. 227 (2016) 110-116. |
[85] | P.Y. Li, B.Q. Xiong, Y.A. Zhang, Z.H. Li, B.H. Zhu, F. Wang, H.W. Liu, Trans. Non- ferrous Met. Soc. China 22 (2012) 268-274. |
[86] | P.Y. Li, B.Q. Xiong, Y.A. Zhang, Z.H. Li, Trans. Nonferrous Met. Soc. China 22 (2012) 546-554. |
[87] | K. Ural, J. Mater. Sci. 13 (1994) 383-385. |
[88] |
K. Rajan, W. Wallace, J.C. Beddoes, J. Mater. Sci. 17 (1982) 2817-2824.
DOI URL |
[89] | B.J. Connolly, C.P. Ferrer, M.G. Koul, A.L. Moran, Utilization of low temperature retrogression and re-aging (RRA) heat treatments to improved strength/SCC properties for thick section components of aluminium alloy 7075 for ag- ing aircraft refurbishment, in:2002 NACE Conference Papers, Colorado, Apr. (2002) 7-11. |
[90] | W.H. Hunt, J.T. Staley, D.A. Lukasak, D.B. Reiser, R.K. Wyss, L.M. Angers, M.H. Brown, J. Liu, S. Lee, EP 0377779B2 (Jul. 1990). |
[91] | D.K. Denzer, D.J. Chakrabarti, J. Liu, L.E. Oswald, R.W. Westerlund, US 0051784 (2003). |
[92] | F. Viana, A.M.P. Pinto, H.M.C. Santos, A.B. Lopesc, J. Mater. Process. Technol. 92-93 (1999) 54-59. |
[93] |
H. Inoue, T. Sato, Y. Kojima, T. Takahashi, Metall. Mater. Trans. A 12 (1981) 1429-1434.
DOI URL |
[94] |
L.B. Ber, Mater. Sci. Eng. A 280 (2000) 91-96.
DOI URL |
[95] | P.K. Poulose, J.E. Morral, A.J. McEvily, Metall. Trans. 5 (1974) 1393-1400. |
[96] |
H. Löffler, I. Kovács, J. Lendvai, J. Mater. Sci. 18 (1983) 2215-2240.
DOI URL |
[97] | Properties and selection: Nonferrous alloys and special-purpose materials, 2, 10th ed., ASM Handbook, Materials Park, Ohio, 1990. |
[98] | Alcoa mill products, Alloy 7475 plate and sheet (2022) https://www.spacematdb.com/spacemat/manudatasheets/alloy7475techplatesheet. |
[99] |
W.X. Shu, L.G. Hou, C. Zhang, F. Zhang, J.C. Liu, J.T. Liu, L.Z. Zhuang, J.S. Zhang, Mater. Sci. Eng. A 657 (2016) 269-283.
DOI URL |
[100] |
R. Ferragut, A. Somoza, A. Dupasquier, J. Phys.: Condens. Matter 10 (1998) 3903-3918.
DOI URL |
[101] |
R. Ferragut, A. Somoza, A. Dupasquier, J. Phys.: Condens. Matter 8 (1996) 8945-8952.
DOI URL |
[102] |
G. Dlubek, R. Krause, O. Brümmer, F. Plazaola, J. Mater. Sci. 21 (1986) 853-858.
DOI URL |
[103] |
G. Dlubek, Cryst. Res. Technol. 19 (1984) 1319-1324.
DOI URL |
[104] |
G. Dlubek, W. Gerber, Phys. Status Solidi b 163 (1991) 83-89.
DOI URL |
[105] |
G. Sha, A. Cerezo, Acta Mater 53 (2005) 907-917.
DOI URL |
[106] |
S. Ceresara, P. Fiorini, Mater. Sci. Eng. 10 (1972) 205-210.
DOI URL |
[107] | A. Dupasquier, P. Folegati, A. Rolando, A. Somoza, S. Abis, Mater. Sci. Forum 175-178 (1994) 351-354. |
[108] | A. Deschamps, A. Bigot, F. Livet, P. Auger, Y. Bréchet, D. Blavette, Philos. Mag. 81 (2001) 2391-2414. |
[109] |
M. Dumont, W. Lefebvre, B. Doisneau-Cottignies, A. Deschamps, Acta Mater 53 (2005) 2881-2892.
DOI URL |
[110] | M.H. Brown, J.T. Staley, J. Liu, S. Lee, US 4863528 (1989). |
[111] | D.J. Chakrabarti, J. Liu, J.H. Goodman, G.B. Venema, R.R. Sawtell, C.M. Krist, R.W. Westerlund, US 8524014 B2 (2013). |
[112] | R.N. Lumley, I.J. Polmear, A.J. Morton, US 7025839 (2006). |
[113] |
J. Buha, R.N. Lumley, A.G. Crosky, Mater. Sci. Eng. A 492 (2008) 1-10.
DOI URL |
[114] |
Y. Chen, M. Weyland, C.R. Hutchinson, Acta Mater 61 (2013) 5877-5894.
DOI URL |
[115] |
M.E. Burba, M.J. Caton, S.K. Jha, C.J. Szczepanski, Metall. Mater. Trans. A 44 (2013) 4954-4967.
DOI URL |
[116] | L.O.R. Lima, S.C. Jacumasso, C.O.F. Terra Ruchert, J.P. Martins, A.L.M. Carvalho, Fatigue 2014, Melbourne, Australia, Mar. (2014) 2-7. |
[117] | Y.Q. Chen, W.W. Song, S.P. Pan, W.H. Liu, J. Central South Univ. (Sci. & Tech.) 47 (2016) 3332-3340. |
[118] | C. Loader, B.R. Crawford, A. Shekhter, Retrogression and re-ageing in-service demonstrator trial: stage II component test report, DSTO-TR-2686 (Mar. 2012). |
[119] | R.T. Holt, M.D. Raizenne, W. Wallace, D.L. DuQuesnay, RRA heat treatment of large Al 7075-T 6 components, in: RTO AVT Workshop on “New Metallic Ma- terials for the Structure of Aging Aircraft”, Corfu, Greece, Apr. (1999) 19-20. |
[120] |
N.J. Henry Holroyd, G.M. Scamans, Metall. Mater. Trans. A 44 (2013) 1230-1253.
DOI URL |
[121] |
Q. Luo, Y.L. Guo, B. Liu, Y.J. Feng, J.Y. Zhang, Q. Li, K.C. Chou, J. Mater. Sci. Technol. 44 (2020) 171-190.
DOI URL |
[122] |
C.L. Liu, A. Garner, H. Zhao, P.B. Prangnell, B. Gault, D. Raabe, P. Shanthraj, Acta Mater 214 (2021) 116966.
DOI URL |
[123] |
J.M. Chen, T.S. Sun, R.K. Viswanadham, J.A.S. Green, Metall. Trans. A 8 (1977) 1935-1940.
DOI URL |
[124] |
R.K. Viswanadham, T.S. Sun, J.A.S. Green, Metall. Trans. A 11 (1980) 85-89.
DOI URL |
[125] |
R.G. Song, M.K. Tseng, B.J. Zhang, J. Liu, Z.H. Jin, K.S. Shin, Acta Mater 44 (1996) 3241-3248.
DOI URL |
[126] |
R.G. Song, W. Dietzel, B.J. Zhang, Acta Mater 52 (16) (2004) 4727-4743.
DOI URL |
[127] | J.T. Staley, R.H. Brown, R. Achmidt, Metall. Trans. 3 (1972) 191-199. |
[128] |
T. Ogura, S. Hirosawa, A. Cerezo, T. Sato, Acta Mater 58 (2010) 5714-5723.
DOI URL |
[129] | T. Ogura, T. Sato, J.Japan Inst, Light Metals 63 (2013) 196-203. |
[1] | Chenhao Ren, Yao Huang, Wenkui Hao, Dawei Zhang, Xiejing Luo, Lingwei Ma, Jinke Wang, Thee Chowwanonthapunya, Chaofang Dong, Xiaogang Li. Multi-action self-healing coatings with simultaneous recovery of corrosion resistance and adhesion strength [J]. J. Mater. Sci. Technol., 2022, 101(0): 18-27. |
[2] | H.Z. Lu, L.H. Liu, , X. Luo, C.H. Song, Z. Wang, J. Wang, Y.D. Su, Y.F. Ding, L.C. Zhang, Y.Y. Li. Simultaneous enhancement of mechanical and shape memory properties by heat-treatment homogenization of Ti2Ni precipitates in TiNi shape memory alloy fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 101(0): 205-216. |
[3] | Laishan Yang, Zhibo Dong, Lei Wang, Nikolas Provatas. Improved multi-order parameter and multi-component model of polycrystalline solidification [J]. J. Mater. Sci. Technol., 2022, 101(0): 217-225. |
[4] | Fu-Zhi Dai, Yinjie Sun, Yixiao Ren, Huimin Xiang, Yanchun Zhou. Segregation of solute atoms in ZrC grain boundaries and their effects on grain boundary strengths [J]. J. Mater. Sci. Technol., 2022, 101(0): 234-241. |
[5] | Jiantao Fan, Liming Fu, Yanle Sun, Feng Xu, Yi Ding, Mao Wen, Aidang Shan. Unveiling the precipitation behavior and mechanical properties of Co-free Ni47-xFe30Cr12Mn8AlxTi3 high-entropy alloys [J]. J. Mater. Sci. Technol., 2022, 118(0): 25-34. |
[6] | Zhuojie Shao, Zhen Wu, Luchao Sun, Xianpeng Liang, Zhaoping Luo, Haikun Chen, Junning Li, Jingyang Wang. High entropy ultra-high temperature ceramic thermal insulator (Zr1/5Hf1/5Nb1/5Ta1/5Ti1/5)C with controlled microstructure and outstanding properties [J]. J. Mater. Sci. Technol., 2022, 119(0): 190-199. |
[7] | Zi Yang, Igor Erdle, Chunhui Liu, John Banhart. Clustering and precipitation in Al-Mg-Si alloys during linear heating [J]. J. Mater. Sci. Technol., 2022, 120(0): 78-88. |
[8] | Jia Li, Baobin Xie, Quanfeng He, Bin Liu, Xin Zeng, Peter K. Liaw, Qihong Fang, Yong Yang, Yong Liu. Chemical-element-distribution-mediated deformation partitioning and its control mechanical behavior in high-entropy alloys [J]. J. Mater. Sci. Technol., 2022, 120(0): 99-107. |
[9] | Sen Yu, Zhe Yu, Dagang Guo, Hui Zhu, Minghua Zhang, Jianye Han, Zhentao Yu, Yemin Cao, Gui Wang. Enhanced bioactivity and interfacial bonding strength of Ti3Zr2Sn3Mo25Nb alloy through graded porosity and surface bioactivation [J]. J. Mater. Sci. Technol., 2022, 100(0): 137-149. |
[10] | Zhilei Wei, Zhejian Zhang, Xiaoyu Zhang, Zhiyuan Li, Tao Li, Jiabin Hu, Shunjian Xu, Zhongqi Shi. Preparation of unidirectional porous AlN ceramics via the combination of freeze casting and combustion synthesis [J]. J. Mater. Sci. Technol., 2022, 100(0): 161-168. |
[11] | Zhen Ma, Huarui Zhang, Hanwei Fu, Yanzhao Yang, Jianji Wang, Ming Du, Hu Zhang. Insights into the rheological modeling of semi-solid metals: Theoretical and simulation study [J]. J. Mater. Sci. Technol., 2022, 100(0): 182-192. |
[12] | Xiang Chen, Baoxuan Zhang, Qin Zou, Guangsheng Huang, Shuaishuai Liu, Junlei Zhang, Aitao Tang, Bin Jiang, Fusheng Pan. Design of pure aluminum laminates with heterostructures for extraordinary strength-ductility synergy [J]. J. Mater. Sci. Technol., 2022, 100(0): 193-205. |
[13] | Muzhi Ma, Zhu Xiao, Xiangpeng Meng, Zhou Li, Shen Gong, Jie Dai, Hongyun Jiang, Yanbin Jiang, Qian Lei, Haigen Wei. Effects of trace calcium and strontium on microstructure and properties of Cu-Cr alloys [J]. J. Mater. Sci. Technol., 2022, 112(0): 11-23. |
[14] | Cheng Zhu, Zhihao Zhao, Qingfeng Zhu, Gaosong Wang, Yubo Zuo, Qiangqiang Li, Gaowu Qin. Hot-top direct chill casting assisted by a twin-cooling field: Improving the ingot quality of a large-size 2024 Al alloy [J]. J. Mater. Sci. Technol., 2022, 112(0): 114-122. |
[15] | Yanfang Wang, Xin Lin, Nan Kang, Zihong Wang, Yuxi Liu, Weidong Huang. Influence of post-heat treatment on the microstructure and mechanical properties of Al-Cu-Mg-Zr alloy manufactured by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 111(0): 35-48. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||