J. Mater. Sci. Technol. ›› 2022, Vol. 119: 123-130.DOI: 10.1016/j.jmst.2021.09.007
• Research Article • Previous Articles Next Articles
Qi Xue, Tao Hang(
), Jianghu Liang, Chun-Chao Chen, Yunwen Wu, Huiqin Ling, Ming Li
Received:2021-06-07
Revised:2021-08-29
Accepted:2021-09-14
Published:2022-08-20
Online:2022-03-03
Contact:
Tao Hang
About author:* E-mail address: hangtao@sjtu.edu.cn (T. Hang).Qi Xue, Tao Hang, Jianghu Liang, Chun-Chao Chen, Yunwen Wu, Huiqin Ling, Ming Li. Nonvolatile resistive memory and synaptic learning using hybrid flexible memristor based on combustion synthesized Mn-ZnO[J]. J. Mater. Sci. Technol., 2022, 119: 123-130.
Fig 1. (a) Illustration of the flexible Ag/Mn-ZnO/ITO memristor on PEN substrate and (b) optical image. (c) Cross-sectional SEM image of the Ag/Mn-ZnO/ITO memristor. (d) SEM and (e) AFM images and (f) XRD pattern of the Mn-ZnO films prepared on ITO substrate. (g) XPS survey and (h) O1s spectrum of the Mn-ZnO films. (i) PL spectra of the Mn-ZnO and RF-ZnO films.
Fig 2. The electronic characteristics of the Ag/Mn-ZnO/ITO device under the flat state. (a) A schematic illustration of the memristor. (b) Typical I-V curve of the device. (c) Conduction mechanism of the positive part of I-V curve. (d) I-V curves of the device under 50 consecutive DC sweeps. (e) Histograms of the set and reset voltage distribution. (f) Statistical cumulative probability of the on and off current.
Fig 3. Electronic characteristics of the Ag/Mn-ZnO/ITO device under bend state. (a) Schematic illustration of the memristor. (b) Typical I-V curve of the device. (c) Conduction mechanism of the positive part of I-V curve. (d) I-V curves of the device under 50 consecutive DC sweeps. (e) Histograms of the set and reset voltage distribution. (f) Statistical cumulative probability of the on and off current.
Fig 4. (a) I-V curves of the memristor under 0.1, 0.3, 0.5, 0.8, and 1 mA compliance current. (b) Resistance value of LRS with varied compliance current. (c) Schematic illustration of multilevel storage mechanism for Ag/Mn-ZnO/ITO device.
Fig 5. (a) Schematic diagram of the human neuronal synapse. (b) I-V curves of the memristor under 10 consecutive positive sweeping voltages and 10 negative sweeping voltages. (c) Current and voltage data vs time for the memristor. (d) The conductance was modulated for 10 cycles obtained by alternating positive and negative pulse trains. (e) The PPF effect obtained by the applied two paired pulses (2 V, 50 ms) at the interval (500 ms). (f) PPF ratio as a function of pulse interval.
Fig 6. Learning and memorization behavior of the Mn-ZnO-based memristor. (a) The photograph of the memristor array. (b) Initial state. (c) Synaptic weights after training 5 times. (d) Synaptic weights after training 50 times. (e) Synaptic weights after training 1000 s.
| [1] |
T.N. Theis, H.S.P. Wong, Comput. Sci. Eng. 19 (2017) 41-50.
DOI URL |
| [2] |
M.M. Waldrop, Nature 530 (2016) 144-147.
DOI URL |
| [3] | S. Choi, J. Yang, G. Wang, Adv. Mater. 32 (2020) 2004659. |
| [4] |
M.A. Zidan, J.P. Strachan, W.D. Lu, Nat. Electron. 1 (2018) 22-29.
DOI URL |
| [5] |
Q.F. Xia, J.J. Yang, Nat. Mater. 18 (2019) 309-323.
DOI URL |
| [6] |
B.R. Lee, J.H. Park, T.H. Lee, T.G. Kim, ACS Appl. Mater. Interfaces 11 (2019) 5215-5222.
DOI URL |
| [7] |
J. Shang, G. Liu, H.L. Yang, X.J. Zhu, X.X. Chen, H.W. Tan, B.L. Hu, L. Pan, W.H. Xue, R.W. Li, Adv. Funct. Mater. 24 (2014) 2171-2179.
DOI URL |
| [8] | D. Kumar, U. Chand, L. WenSiang, T.Y. Tseng, IEEE Trans. Electron Devices 67 (2020) 4 93-4 98. |
| [9] |
P. Zhang, C.X. Gao, B.H. Xu, L. Qi, C.J. Jiang, M.Z. Gao, D.S. Xue, Small 12 (2016) 2077-2084.
DOI PMID |
| [10] |
Y.S. Ji, D.F. Zeigler, D.S. Lee, H. Choi, A.K. Jen, H.C. Ko, T.W. Kim, Nat. Commun. 4 (2013) 2707.
DOI URL |
| [11] |
T. Aziz, Y. Sun, Z.H. Wu, M. Haider, T.Y. Qu, A. Khan, C. Zhen, Q. Liu, H.M. Cheng, D.M. Sun, J. Mater. Sci. Technol. 86 (2021) 151-157.
DOI URL |
| [12] |
H. Wang, B.W. Zhu, H. Wang, X.H. Ma, Y. Hao, X.D. Chen, Small 12 (2016) 3360-3365.
DOI URL |
| [13] | J.Q. Xu, X.N. Zhao, Z.Q. Wang, H.Y. Xu, J.L. Hu, J.G. Ma, Y.C. Liu, Small 15 (2019) 1803970. |
| [14] |
M. Laurenti, S. Porro, C.F. Pirri, C. Ricciardi, A. Chiolerio, Crit. Rev. Solid State Mat. Sci. 42 (2016) 153-172.
DOI URL |
| [15] |
J. Zhang, H. Yang, Q.L. Zhang, S.R. Dong, J.K. Luo, Appl. Phys. Lett. 102 (2013) 012113.
DOI URL |
| [16] |
S. Punugupati, N.K. Temizer, J. Narayan, F. Hunte, J. Appl. Phys. 115 (2014) 234501.
DOI URL |
| [17] |
P.Y. Wu, H.X. Zheng, C.C. Shih, T.C. Chang, W.J. Chen, C.C. Yang, W.C. Chen, M.C. Tai, Y.F. Tan, H.C. Huang, X.H. Ma, Y. Hao, T.M. Tsai, S.M. Sze, IEEE Electron Device Lett 41 (2020) 357-360.
DOI URL |
| [18] |
S. Kim, H. Moon, D. Gupta, S. Yoo, Y.K. Choi, IEEE Trans. Electron Devices 56 (2009) 696-699.
DOI URL |
| [19] |
M.H. Tang, B. Jiang, Y.G. Xiao, Z.Q. Zeng, Z.P. Wang, J.C. Li, J. He, Microelectron. Eng. 93 (2012) 35-38.
DOI URL |
| [20] |
J.J. Yang, M.X. Zhang, J.P. Strachan, F. Miao, M.D. Pickett, R.D. Kelley, G. Medeiros-Ribeiro, R.S. Williams, Appl. Phys. Lett. 97(2010)232102.
DOI URL |
| [21] |
T.Y. Wang, J.L. Meng, Q.X. Li, L. Chen, H. Zhu, Q.Q. Sun, S.J. Ding, D.W. Zhang, J. Mater. Sci. Technol. 60 (2021) 21-26.
DOI URL |
| [22] |
C.G. Van de Walle, Phys. Rev. Lett. 85 (20 0 0) 1012-1015.
DOI URL |
| [23] |
L. Zhang, Z. Xu, J. Han, L. Liu, C. Ye, Y. Zhou, W. Xiong, Y.X. Liu, G. He, J. Mater. Sci. Technol. 49 (2020) 1-6.
DOI |
| [24] |
Y.C. Yang, F. Pan, Q. Liu, M. Liu, F. Zeng, Nano Lett 9 (2009) 1636-1643.
DOI URL |
| [25] |
Y. Ji, Y. Yang, S.K. Lee, G. Ruan, T.W. Kim, H. Fei, S.H. Lee, D.Y. Kim, J. Yoon, J.M. Tour, ACS Nano 10 (2016) 7598-7603.
DOI URL |
| [26] |
S. Kwon, T.W. Kook, S. Jang, J.H. Lee, N.D. Kim, Y. Ji, C.H. Lee, J.M. Tour, G. Wang, ACS Appl. Mater. Interfaces 9 (2017) 34015-34023.
DOI URL |
| [27] |
J.J. Park, S. Lee, J.H. Lee, K.J. Yong, Adv. Mater. 25 (2013) 6423-6429.
DOI URL |
| [28] |
H.W. Huang, C.F. Kang, F.I Lai, J.H. He, S.J. Lin, Y.L. Chueh, Nanoscale Res. Lett. 8 (2013) 483.
DOI URL |
| [29] |
D. Zheng, G. Wang, W. Huang, B.H. Wang, W.J. Ke, J.L. Logsdon, H.Y. Wang, Z. Wang, W.G. Zhu, J.S. Yu, M.R. Wasielewski, M.G. Kanatzidis, T.J. Marks, A. Facchetti, Adv. Funct. Mater. 29 (2019) 1900265.
DOI URL |
| [30] |
J. Socratous, K.K. Banger, Y. Vaynzof, A. Sadhanala, A.D. Brown, A. Sepe, U. Steiner, H. Sirringhaus, Adv. Funct. Mater. 25 (2015) 1873-1885.
DOI URL |
| [31] |
Z.G. Geng, X.D. Kong, W.W. Chen, H.Y. Su, Y. Liu, F. Cai, G.X. Wang, J. Zeng, Angew. Chem.-Int. Edit. 57 (2018) 6054-6059.
DOI URL |
| [32] |
S. Jiang, Z.H. Ren, S.Y. Gong, S.M. Yin, Y.F. Yu, X. Li, G. Xu, G. Shen, G.R. Han, Appl. Surf. Sci. 289 (2014) 252-256.
DOI URL |
| [33] |
T.Y. Wang, J.L. Meng, Z.Y. He, L. Chen, H. Zhu, Q.Q. Sun, S.J. Ding, P. Zhou, D.W. Zhang, Nanoscale 12 (2020) 9116-9123.
DOI URL |
| [34] | M.C. Wu, Y.H. Ting, J.Y. Chen, W.W. Wu, Adv. Sci. 6 (2019) 1902363. |
| [35] |
G. Anoop, V. Panwar, T.Y. Kim, J.Y. Jo, Adv. Electron. Mater. 3 (2017) 1700264.
DOI URL |
| [36] |
Y. Wang, Q. Liu, H.B. Lü, S.B. Long, W. Wang, Y.T. Li, S. Zhang, W.T. Lian, J.H. Yang, M. Liu, Chin. Sci. Bull. 57 (2012) 1235-1240.
DOI URL |
| [37] |
A. Kumar, M. Das, V. Garg, B.S. Sengar, M.T. Htay, S. Kumar, A. Kranti, S. Mukherjee, Appl. Phys. Lett. 110 (2017) 253509.
DOI URL |
| [38] |
X.P. Shen, H.X. Gao, Y.W. Duan, Y.X. Sun, J.S. Guo, Z.X. Yu, S.L. Wu, X.H. Ma, Y.T. Yang, Appl. Phys. Lett. 118 (2021) 183503.
DOI URL |
| [39] |
J. Lee, W. Schell, X. Zhu, E. Kioupakis, W.D. Lu, ACS Appl. Mater. Interfaces 11 (2019) 11579-11586.
DOI URL |
| [40] |
X.Y. Yan, X.T. Wang, D. Wang, M.G. Li, L. Guan, J.D. Yao, X.Y. Niu, B.R. Xing, Y. Yu, M.Q. Tan, J. Sha, Y.W. Wang, Nanotechnology 31 (2020) 115209.
DOI URL |
| [41] |
Y.X. Yang, G.L. Yuan, Z.B. Yan, Y.J. Wang, X.B. Lu, J.M. Liu, Adv. Mater. 29 (2017) 1700425.
DOI URL |
| [42] | J.H. Lee, S.P. Park, K. Park, H.J. Kim, Adv. Funct. Mater. 30 (2019) 1907437. |
| [43] |
D. Xue, H.J. Song, X.L. Zhong, J.B. Wang, N. Zhao, H.X. Guo, P.T. Cong, J. Alloy. Compd. 822 (2020) 153552.
DOI URL |
| [44] | F. Nardi, S. Larentis, S. Balatti, D.C. Gilmer, D. Ielmini, IEEE Trans. Electron De- vices 59 (2012) 2461-2467. |
| [45] |
Y.C. Yang, P. Gao, S. Gaba, T. Chang, X.Q. Pan, W. Lu, Nat. Commun. 3 (2012) 732.
DOI URL |
| [46] |
G.Q. Bi, M.M. Poo, J. Neurosci. 18 (1998) 10464-10472.
PMID |
| [47] |
Y. Tang, J.R. Nyengaard, D.M.G. De Groot, H.J.G. Gundersen, Synapse 41 (2010) 258-273.
DOI URL |
| [48] |
C. Du, W. Ma, T. Chang, P. Sheridan, W.D. Lu, Adv. Funct. Mater. 25 (2015) 4290-4299.
DOI URL |
| [49] | Y. Lin, T. Zeng, H.Y. Xu, Z.Q. Wang, X.N. Zhao, W.Z. Liu, J.G. Ma, Y.C. Liu, Adv. Electron. Mater. 4 (2018) 1800373. |
| [50] |
R.S. Zucker, W.G. Regehr, Annu. Rev. Physiol. 64 (2002) 355-405.
DOI URL |
| [1] | Zhilei Wei, Zhejian Zhang, Xiaoyu Zhang, Zhiyuan Li, Tao Li, Jiabin Hu, Shunjian Xu, Zhongqi Shi. Preparation of unidirectional porous AlN ceramics via the combination of freeze casting and combustion synthesis [J]. J. Mater. Sci. Technol., 2022, 100(0): 161-168. |
| [2] | Hyunjun Park, Woong Kim, Sang Won Lee, Joohyung Park, Gyudo Lee, Dae Sung Yoon, Wonseok Lee, Jinsung Park. Flexible and disposable paper-based gas sensor using reduced graphene oxide/chitosan composite [J]. J. Mater. Sci. Technol., 2022, 101(0): 165-172. |
| [3] | Muhammad Ismail, Umesh Chand, Chandreswar Mahata, Jamel Nebhen, Sungjun Kim. Demonstration of synaptic and resistive switching characteristics in W/TiO2/HfO2/TaN memristor crossbar array for bioinspired neuromorphic computing [J]. J. Mater. Sci. Technol., 2022, 96(0): 94-102. |
| [4] | Nasir Ilyas, Jingyong Wang, Chunmei Li, Hao Fu, Dongyang Li, Xiangdong Jiang, Deen Gu, Yadong Jiang, Wei Li. Controllable resistive switching of STO:Ag/SiO2-based memristor synapse for neuromorphic computing [J]. J. Mater. Sci. Technol., 2022, 97(0): 254-263. |
| [5] | Lin Zhang, Nuomei Li, Qiuchen Ma, Jiahui Ding, Chuang Chen, Zhaocheng Hu, Weiwei Zhao, Yufeng Li, Huanhuan Feng, Mingyu Li, Hongjun Ji. Large-area flexible and transparent UV photodetector based on cross-linked Ag NW@ZnO NRs with high performance [J]. J. Mater. Sci. Technol., 2022, 110(0): 65-72. |
| [6] | Yiru Mao, Yixiang Wu, Pengju Zhang, Yang Yu, Zhizhu He, Qian Wang. Nanocellulose-based reusable liquid metal printed electronics fabricated by evaporation-induced transfer printing [J]. J. Mater. Sci. Technol., 2021, 61(0): 132-137. |
| [7] | Dinesh J. Ahirrao, Ajay Kumar Pal, Vikalp Singh, Neetu Jha. Nanostructured porous polyaniline (PANI) coated carbon cloth (CC) as electrodes for flexible supercapacitor device [J]. J. Mater. Sci. Technol., 2021, 88(0): 168-182. |
| [8] | Jinming Hu, Shengyi Yang, Zhenheng Zhang, Hailong Li, Chandrasekar Perumal Veeramalai, Muhammad Sulaman, Muhammad Imran Saleem, Yi Tang, Yurong Jiang, Libin Tang, Bingsuo Zou. Solution-processed, flexible and broadband photodetector based on CsPbBr3/PbSe quantum dot heterostructures [J]. J. Mater. Sci. Technol., 2021, 68(0): 216-226. |
| [9] | Tian-Yu Wang, Jia-Lin Meng, Qing-Xuan Li, Lin Chen, Hao Zhu, Qing-Qing Sun, Shi-Jin Ding, David Wei Zhang. Forming-free flexible memristor with multilevel storage for neuromorphic computing by full PVD technique [J]. J. Mater. Sci. Technol., 2021, 60(0): 21-26. |
| [10] | Xinzhi Wang, Yao Wang, Xinbo Zhang, Wei Ding, Longlong Li, Linjun Huang, Laurence A. Belfiore, Jianguo Tang. Highly sensitive color fine-tuning of diblock copolymeric nano-aggregates with tri-metallic cations, Eu(III), Tb(III), and Zn(II), for flexible photoluminescence films (FPFs) [J]. J. Mater. Sci. Technol., 2021, 65(0): 72-81. |
| [11] | Tariq Aziz, Yun Sun, Zu-Heng Wu, Mustafa Haider, Ting-Yu Qu, Azim Khan, Chao Zhen, Qi Liu, Hui-Ming Cheng, Dong-Ming Sun. A flexible nickel phthalocyanine resistive random access memory with multi-level data storage capability [J]. J. Mater. Sci. Technol., 2021, 86(0): 151-157. |
| [12] | Tukaram D. Dongale, Atul C. Khot, Ashkan V. Takaloo, Kyung Rock Son, Tae Geun Kim. Multilevel resistive switching and synaptic plasticity of nanoparticulated cobaltite oxide memristive device [J]. J. Mater. Sci. Technol., 2021, 78(0): 81-91. |
| [13] | Xiaobei Zang, Li Lingtong, Jiaxin Meng, Lijia Liu, Yuanyuan Pan, Qingguo Shao, Ning Cao. Enhanced zinc storage performance of mixed valent manganese oxide for flexible coaxial fiber zinc-ion battery by limited reduction control [J]. J. Mater. Sci. Technol., 2021, 74(0): 52-59. |
| [14] | Xuemin Yin, Hejun Li, Ruimei Yuan, Jinhua Lu. Metal-organic framework derived hierarchical NiCo2O4 triangle nanosheet arrays@SiC nanowires network/carbon cloth for flexible hybrid supercapacitors [J]. J. Mater. Sci. Technol., 2021, 81(0): 162-174. |
| [15] | Xiaofang Ye, Hongkun Cai, Jian Su, Jingtao Yang, Jian Ni, Juan Li, Jianjun Zhang. Preparation of hysteresis-free flexible perovskite solar cells via interfacial modification [J]. J. Mater. Sci. Technol., 2021, 61(0): 213-220. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
