J. Mater. Sci. Technol. ›› 2022, Vol. 115: 1-9.DOI: 10.1016/j.jmst.2021.10.043
• Research Article • Next Articles
Langting Zhanga, Yajuan Duana,b, Eloi Pinedab, Hidemi Katoc, Jean-Marc Pelletierd, Jichao Qiaoa,e,*()
Received:
2021-09-30
Revised:
2021-10-14
Accepted:
2021-10-21
Published:
2022-07-10
Online:
2022-01-21
Contact:
Jichao Qiao
About author:
*School of Mechanics, Civil Engineering and Architec-ture, Northwestern Polytechnical University, Xi’an 710072, China. E-mail address: qjczy@nwpu.edu.cn (J. Qiao).Langting Zhang, Yajuan Duan, Eloi Pineda, Hidemi Kato, Jean-Marc Pelletier, Jichao Qiao. Effect of physical aging and cyclic loading on power-law creep of high-entropy metallic glass[J]. J. Mater. Sci. Technol., 2022, 115: 1-9.
Fig. 1. The strain as a function of time of La30Ce30Ni10Al20Co10 HE-MG in different states (Samples were aged for a duration from 0 to 6600 s at 363 K). The applied stress is 100 MPa and the creep temperature is 363 K. The solid lines are fitted by a power-law approximation.
Fig. 3. (a) The log-log plot of strain rate against creep time. The curve shows three parts of distinct power-law decay, corresponding to fast, second, and slow relaxation modes. Crossovers at times τc1 and τc2 can be clearly seen; (b) The log-log plot of strain rate against creep time of samples aged for 0, 3000 and 6600 s at 363 K; Pre-aging time dependence of power-law exponent γi, i = 1, 2, 3, (c) and crossover times τc1 and τc2 (d). The error bars are from uncertainty of linear fit.
Fig. 4. The strain of La30Ce30Ni10Al20Co10 HE-MG as a function of elapsed time at a constant temperature of 363 K and a fixed applied stress of 100 MPa. The sample is aged at 363 K for 7200 s and the recovery time between two loading cycles is also 7200 s.
Fig. 5. The strain evolution with creep time during the consecutive four creep cycles with an applied stress of 100 MPa at 363 K and recovery times of 300 s (a) and 7200 s (b). the relaxation intensity decreases with the increase of the cyclic times; (c) The log-log plot of strain rate against creep time during the first and last creep cycles of samples aged for 7200 s.
Fig. 6. Evolution of the power-law exponents γ1 (a), γ2 (b), and γ3 (c) as a function of the cycle number and recovery time. The error bars are from the uncertainty of linear fit.
[1] |
W.L. Johnson, Prog. Mater. Sci. 30 (1986) 81-134.
DOI URL |
[2] |
J.C. Qiao, Q. Wang, J.M. Pelletier, H. Kato, R. Casalini, D. Crespo, E. Pineda, Y. Yao, Y. Yang, Prog. Mater. Sci. 104 (2019) 250-329.
DOI |
[3] |
W.H. Wang, Prog. Mater. Sci. 106 (2019) 100561.
DOI URL |
[4] |
L.C. Zhang, Z. Jia, F. Lyu, S.X. Liang, J. Lu, Prog. Mater. Sci. 105 (2019) 100576.
DOI URL |
[5] |
Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, Y. Yang, Mater. Today 19 (2016) 349-362.
DOI URL |
[6] | A. Takeuchi, N. Chen, T. Wada, Y. Yokoyama, H. Kato, A. Inoue, J.W. Yeh, Inter-metallics 19 (2011) 1546-1554. |
[7] |
S.F. Zhao, G.N. Yang, H.Y. Ding, K.F. Yao, Intermetallics 61 (2015) 47-50.
DOI URL |
[8] |
M. Yang, X. Liu, Y. Wu, H. Wang, X. Wang, Z. Lu, Mater. Res. Lett. 6 (2018) 495-500.
DOI URL |
[9] |
H. Li, X. Xie, K. Zhao, Y. Wang, Y. Zheng, W. Wang, L. Qin, Acta Biomater. 9 (2013) 8561-8573.
DOI PMID |
[10] |
T.C. Hufnagel, C.A. Schuh, M.L. Falk, Acta Mater. 109 (2016) 375-393.
DOI URL |
[11] | D. Caillard, J.L. Martin, Thermally Activated Mechanisms in Crystal Plasticity, Elsevier, 2003. |
[12] |
J.O. Krisponeit, S. Pitikaris, K.E. Avila, S. Küchemann, A. Krüger, K. Samwer, Nat. Commun. 5 (2014) 3616.
DOI PMID |
[13] |
Y.T. Cheng, Q. Hao, J.M. Pelletier, E. Pineda, J.C. Qiao, Int. J. Plast. 146 (2021) 103107.
DOI URL |
[14] |
J.S. Harmon, M.D. Demetriou, W.L. Johnson, K. Samwer, Phys. Rev. Lett. 99 (2007) 135502.
DOI URL |
[15] |
J.M. Pelletier, D.V. Louzguine-Luzgin, S. Li, A. Inoue, Acta Mater. 59 (2011) 2797-2806.
DOI URL |
[16] |
Y. Tong, W. Dmowski, H. Bei, Y. Yokoyama, T. Egami, Acta Mater. 148 (2018) 384-390.
DOI URL |
[17] |
B.G. Yoo, J.Y. Kim, Y.J. Kim, I.C. Choi, S. Shim, T.Y. Tsui, H. Bei, U. Ramamurty, J.I. Jang, Int. J. Plast. 37 (2012) 108-118.
DOI URL |
[18] |
Z. Lu, W. Jiao, W.H. Wang, H.Y. Wang, Phys. Rev. Lett. 113 (4) (2014) 045501.
DOI URL |
[19] | P. Cao, M.P. Short, S. Yip, Proc. Natl. Acad. Sci. 114 (52) (2017) 13631-13636. |
[20] |
L.T. Zhang, Y.J. Duan, D. Crespo, E. Pineda, Y.J. Wang, J.M. Pelletier, J.C. Qiao, Sci. China Phys. Mech. Astron. 64 (2021) 296111.
DOI URL |
[21] | M.E. Kassner, Fundamentals of Creep in Metals and Alloys, Butterworth-Heine-mann, 2015. |
[22] |
X. Tong, G. Wang, J. Yi, J.L. Ren, S. Pauly, Y.L. Gao, Q.J. Zhai, N. Mattern, K.A. Dahmen, P.K. Liaw, J. Eckert, Int. J. Plast. 77 (2016) 141-155.
DOI URL |
[23] |
M.Q. Jiang, G. Wilde, J.B. Gao, L.H. Dai, Scr. Mater. 69 (2013) 760-763.
DOI URL |
[24] |
B.A. Sun, S. Pauly, J. Tan, M. Stoica, W.H. Wang, U. Kühn, J. Eckert, Acta Mater. 60 (2012) 4160-4171.
DOI URL |
[25] |
Z. Kovács, M. Ezzeldien, K. Máthis, P. Ispánovity, F. Chmelík, J. Lendvai, Acta Mater. 70 (2014) 113-122.
DOI URL |
[26] |
M.E. Kassner, K. Smith, V. Eliasson, J. Mater. Res. Technol. 4 (2015) 100-107.
DOI URL |
[27] |
D. Deng, F. Zheng, Y. Xu, G. Qi, A.S. Argon, Acta Metall. Mater. 41 (1993) 1089-1107.
DOI URL |
[28] |
S.S. Tsao, F. Spaepen, Acta Metall. 33 (1985) 891-895.
DOI URL |
[29] |
A.I. Taub, F.E. Luborsky, Acta Metall. 29 (1981) 1939-1948.
DOI URL |
[30] |
P. Lunkenheimer, R. Wehn, U. Schneider, A. Loidl, Phys. Rev. Lett. 95 (2005) 055702.
DOI URL |
[31] |
V.A. Khonik, A.T. Kosilov, V.A. Mikhailov, V.V. Sviridov, Acta Mater. 46 (1998) 3399-3408.
DOI URL |
[32] | H.B. Yu, K. Samwer, W.H. Wang, H.Y. Bai, Nat. Commun. 4 (2013) 1-6. |
[33] |
W. Jiang, B. Zhang, J. Appl. Phys. 127 (2020) 115104.
DOI URL |
[34] |
L.T. Zhang, Y.J. Duan, T. Wada, H. Kato, J.M. Pelletier, D. Crespo, E. Pineda, J.C. Qiao, J. Mater. Sci. Technol. 83 (2021) 248-255.
DOI |
[35] |
L.T. Zhang, Y.J. Duan, D. Crespo, E. Pineda, T. Wada, H. Kato, J.M. Pelletier, J.C. Qiao, Appl. Phys. Lett. 119 (2021) 051905.
DOI URL |
[36] |
A. Jalali, M. Malekan, E.S. Park, R. Rashidi, A. Bahmani, G.H. Yoo, J. Alloy. Compd. 892 (2022) 162220.
DOI URL |
[37] |
G.P. Shrivastav, P. Chaudhuri, J. Horbach, Phys. Rev. E 94 (2016) 042605.
DOI URL |
[38] |
Y. Shi, M.L. Falk, Phys. Rev. Lett. 95 (2005) 095502.
DOI URL |
[39] |
W. Dmowski, Y. Yokoyama, A. Chuang, Y. Ren, M. Umemoto, K. Tsuchiya, A. In-oue, T. Egami, Acta Mater. 58 (2010) 429-438.
DOI URL |
[40] |
F. Spaepen, Scr. Mater. 54 (2006) 363-367.
DOI URL |
[41] |
A.S. Argon, Acta Metall. 27 (1979) 47-58.
DOI URL |
[42] |
J.S. Langer, Scr. Mater. 54 (2006) 375-379.
DOI URL |
[43] |
A.S. Argon, J. Appl. Phys. 39 (1968) 4080-4086.
DOI URL |
[44] |
A.S. Argon, H.Y. Kuo, J. Non Cryst. Solids 37 (1980) 241-266.
DOI URL |
[45] |
C.A. Schuh, A.C. Lund, Nat. Mater. 2 (2003) 449-452.
DOI URL |
[46] |
A.S. Argon, L.T. Shi, Acta Metall. 31 (1983) 499-507.
DOI URL |
[47] |
K. Tao, J.C. Qiao, Q.F. He, K.K. Song, Y. Yang, Int. J. Mech. Sci. 201 (2021) 106469.
DOI URL |
[48] |
M. Heggen, F. Spaepen, M. Feuerbacher, J. Appl. Phys. 97 (2004) 033506.
DOI URL |
[49] |
P. Luo, P. Wen, H.Y. Bai, B. Ruta, W.H. Wang, Phys. Rev. Lett. 118 (2017) 225901.
DOI URL |
[50] |
P. Luo, M.X. Li, H.Y. Jiang, P. Wen, H.Y. Bai, W.H. Wang, J. Appl. Phys. 121 (2017) 135104.
DOI URL |
[51] |
D. Soriano, H. Zhou, S. Hilke, E. Pineda, B. Ruta, G. Wilde, J. Phys. Condens. Matter 33 (2021) 164004.
DOI URL |
[52] |
C.E. Packard, L.M. Witmer, C.A. Schuh, Appl. Phys. Lett. 92 (17) (2008) 171911.
DOI URL |
[53] |
F. Delogu, Phys. Rev. B 79 (2009) 064205.
DOI URL |
[1] | Liliang Shao, Lin Xue, Qiang Luo, Kuibo Yin, Zirui Yuan, Mingyun Zhu, Tao Liang, Qiaoshi Zeng, Litao Sun, Baolong Shen. Heterogeneous GdTbDyCoAl high-entropy alloy with distinctive magnetocaloric effect induced by hydrogenation [J]. J. Mater. Sci. Technol., 2022, 109(0): 147-156. |
[2] | Z.R. Xu, J.C. Qiao, J. Wang, E. Pineda, D. Crespo. Comprehensive insights into the thermal and mechanical effects of metallic glasses via creep [J]. J. Mater. Sci. Technol., 2022, 99(0): 39-47. |
[3] | Y.J. Duan, L.T. Zhang, T. Wada, H. Kato, E. Pined, D. Crespo, J.M. Pelletier, J.C. Qiao. Analysis of the anelastic deformation of high-entropy Pd20Pt20Cu20Ni20P20 metallic glass under stress relaxation and recovery [J]. J. Mater. Sci. Technol., 2022, 107(0): 82-91. |
[4] | L.T. Zhang, Y.J. Duan, T. Wada, H. Kato, J.M. Pelletier, D. Crespo, E. Pineda, J.C. Qiao. Dynamic mechanical relaxation behavior of Zr35Hf17.5Ti5.5Al12.5Co7.5Ni12Cu10 high entropy bulk metallic glass [J]. J. Mater. Sci. Technol., 2021, 83(0): 248-255. |
[5] | J.C. Qiao, Y.H. Chen, R. Casalini, J.M. Pelletier, Y. Yao. Main α relaxation and slow β relaxation processes in a La30Ce30Al15Co25 metallic glass [J]. J. Mater. Sci. Technol., 2019, 35(6): 982-986. |
[6] | Zhang Wei, Wang Xiaowei, Gong Jianming, Jiang Yong, Huang Xin. Experimental and simulated characterization of creep behavior of P92 steel with prior cyclic loading damage [J]. J. Mater. Sci. Technol., 2017, 33(12): 1540-1548. |
[7] | Guozheng Kang, Yujie Liu, Yawei Dong,Qing Gao. Uniaxial Ratcheting Behaviors of Metals with Diffent Crystal Structures or Values of Fault Energy: Macroscopic Experiments [J]. J Mater Sci Technol, 2011, 27(5): 453-459. |
[8] | Hao GUO, Guangfu LI, Xun CAI, Ruipeng YANG, Wu YANG. Effect of Cyclic Loading on Cracking Behaviour of X-70 Pipeline Steel in Near-Neutral pH Solutions [J]. J Mater Sci Technol, 2005, 21(04): 459-464. |
[9] | Huifen CHAI Zheng RUAN Quncheng FAN Dept.of Materials Science and Engineering,Xi'an Jiaotong University,Xi'an,710049,China. Asymmetry Behaviour between Tension and Compression for Prestrained Materials under Cyclic Loading [J]. J Mater Sci Technol, 1993, 9(4): 273-278. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||