J. Mater. Sci. Technol. ›› 2022, Vol. 113: 287-295.DOI: 10.1016/j.jmst.2021.08.075
• Research article • Previous Articles
Mengyuan Hea, Nan Jiaa, Xiaochun Liub,*(), Yongfeng Shena,*(
), Liang Zuoa
Received:
2021-07-13
Revised:
2021-08-16
Accepted:
2021-08-16
Published:
2021-11-02
Online:
2022-06-24
Contact:
Xiaochun Liu,Yongfeng Shen
About author:
shenyf@smm.neu.edu.cn (Y. Shen).1 These authors contributed equally to this work.
Mengyuan He, Nan Jia, Xiaochun Liu, Yongfeng Shen, Liang Zuo. Abnormal chemical composition fluctuations in multi-principal-element alloys induced by simple cyclic deformation[J]. J. Mater. Sci. Technol., 2022, 113: 287-295.
Fig. 2. OM micrographs of (a) the as-annealed and (b) the cyclically pre-deformed CrMnFeCoNi alloy prior to room-temperature tensile testing. CD: cyclically deformed direction (CD), ND: normal direction (ND).
Fig. 4. Chemical analysis by TEM-EDS. Low-magnification HAADF-TEM image and EDS elemental mapping of the as-annealed (a) and the cyclically pre-deformed specimens (b); (c) and (d) represent the line profiles of the atomic fraction of individual elements taken from the respective EDS maps in (a) and (b), respectively.
Fig. 5. TEM imaging and element distribution mapping in the as-annealed CrMnFeCoNi alloy. (a) HAADF image of atomic structure, taken with the [110] zone axis, and the corresponding EDS maps for individual elements of Cr, Mn, Fe, Co, and Ni. (b) Line profiles of the atomic fraction of individual elements taken from the respective EDS maps in (a). each line profile represents the distribution of an element in a (11-1) plane projected along the [110] beam direction. (c) Plots of pair correlation function S(r) of individual elements as a function of concentration wavelength r; S(r) is shifted by avg(C)2, where avg(C) is the average atomic fraction of the corresponding element. (d) Magnification of local regions in (a) (all with the same scale), showing small groups of neighboring atomic columns with similar brightness. (e) Comparison of the local concentration distribution of individual elements for the same region, indicating that the Cr-poor region is filled with a mixture of the other four elements.
Fig. 6. TEM imaging and element distribution mapping in the cyclically pre-deformed CrMnFeCoNi alloy. (a), HAADF image of atomic structure, taken with the [110] zone axis, and the corresponding EDS maps for individual elements. (b), Line profiles of the atomic fraction of individual elements taken from the respective EDS maps in (a). each line profile represents the distribution of an element in a (11-1) plane projected along the [110] beam direction. (c), Plots of pair correlation function S(r) of individual elements as a function of concentration wavelength r. S(r) is shifted by avg(C)2, where avg(C) denotes the average atomic fraction of the corresponding element. (d) Magnification of local regions in (a) (all to the same scale), indicating small groups of neighboring atomic columns with similar brightness. (e) Comparison of the local concentration distribution of individual elements for the same region, indicating that the Fe-poor region is more inclined to be filled by Co and Ni.
Fig. 7. (a) Engineering stress-strain curves of the CrMnFeCoNi alloy subjected to annealing and cyclic deformation, and the magnified section of the tensile curve for the cyclically pre-deformed specimen showing the yield plateau. (b) Summary of the failure elongation versus yield strength for the CrMnFeCoNi alloy undergone the current cyclic deformation and other processing methods [27], [28], [29], [30], [31], [32], [33], [34], [35], [36], [37], [38], [39], [40], [41], [42], [43], [44]. HR/CR+AN: Hot/cold deformation + annealing, AC: As-cast, SLM: Selective laser melting, HPT: High-pressure torsion, MA: Mechanical alloying, SPS: Spark plasma sintering, LENS™: The laser engineered net shaping. CG: coarse-grained, FC: fine-grained, UFG/NG: ultrafine-grained/nano-grained.
Fig. 8. TEM of the cyclically pre-deformed CrMnFeCoNi alloy. (a) The enhanced pinning effect on dislocations, (b) multiple dislocation configurations.
[1] | B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Mater. Sci. Eng. A 375 (2004) 213-218. |
[2] | J.W. Yeh. Ann. Chim. 31 (2006) 633-648. |
[3] |
Z. Yong, T.T. Zuo, T. Zhi, M.C. Gao, K.A. Dahmen, P.K. Liaw, P.L. Zhao, Prog. Mater. Sci. 61 (2014) 1-93.
DOI URL |
[4] |
Y.P. Lu, Y. Dong, H. Jiang, Z.J. Wang, Z.Q. Cao, S. Guo, T.M. Wang, T.J. Li, P.K. Liaw, Scr. Mater. 187 (2020) 202-209.
DOI URL |
[5] |
Y. Fu, J. Li, H. Luo, C.W. Du, X.G. Li, J. Mater. Sci. Technol. 80 (2021) 217-233.
DOI URL |
[6] |
D.B. Miracle, O.N. Senkov, Acta Mater. 122 (2017) 448-511.
DOI URL |
[7] |
O. Moghaddam, N.A. Shaburova, M.N. Samodurova, A. Abdollahzadeh, E.A. Trofimov, J. Mater. Sci. Technol. 77 (2021) 131-162.
DOI |
[8] |
W.D. Li, D. Xie, D.Y. Li, Y. Zhang, Y.F. Gao, P.K. Liaw, Prog. Mater. Sci. 118 (2021) 100777.
DOI URL |
[9] |
E.P. George, W.A. Curtin, C.C. Tasan, Acta Mater. 188 (2020) 435-474.
DOI URL |
[10] |
Z.B. An, S.C. Mao, Y.N. Liu, H. Zhou, Y.D. Zhai, Z.Y. Tian, C.X. Liu, Z. Zhang, X. D. Han, J. Mater. Sci. Technol. 92 (2021) 195-207.
DOI URL |
[11] |
S.Y. Wu, D.X. Qiao, H.T. Zhang, J.W. Miao, H.L. Zhao, J. Wang, Y.P. Lu, T.M. Wang, T.J. Li, J. Mater. Sci. Technol. 97 (2022) 229-238.
DOI URL |
[12] |
Y. Wu, F. Zhang, X.Y. Yuan, H.L. Huang, X.C. Wen, Y.H. Wang, M.Y. Zhang, H.H. Wu, X.J. Liu, H. Wang, S.H. Jiang, Z.P. Lu J. Mater. Sci. Technol. 62 (2021) 214-220.
DOI |
[13] |
Q.Q. Ding, Y. Zhang, X. Chen, X.Q. Fu, D. Chen, S.J. Chen, L. Gu, F. Wei, H.B. Bei, Y.F. Gao, M.R. Wen, J.X. Li, Z. Zhang, T. Zhu, R.O. Ritchie, Q. Yu, Nature 574 (2019) 223-227.
DOI URL |
[14] |
Z.Z. Li, S.T. Zhao, R.O. Ritchie, M.A. Meyers, Prog. Mater. Sci. 102 (2019) 296-345.
DOI URL |
[15] |
X.F. Chen, Q. Wang, Z.Y. Cheng, M.L. Zhu, H. Zhou, P. Jiang, L.L. Zhou, Q.Q. Xue, F.P. Yuan, J. Zhu, X.L. Wu, E. Ma, Nature 592 (2021) 712-716.
DOI URL |
[16] |
Z.F. Lei, X.J. Liu, Y. Wu, H. Wang, S.H. Jiang, S.D. Wang, X.D. Hui, Y.D. Wu, B. Gault, P. Kontis, D. Raabe, L. Gu, Q.H. Zhang, H.W. Chen, H.T. Wang, J.B. Liu, K. An, Q.S. Zeng, T.G. Nieh, Z.P. Lu, Nature 563 (2018) 546-550.
DOI URL |
[17] |
R.P. Zhang, S.T. Zhao, J. Ding, Y. Chong, T. Jia, C. Ophus, M. Asta, R.O. Ritchie, A. M. Minor, Nature 581 (2020) 283-287.
DOI URL |
[18] |
G. Saada, Physica 27 (1961) 657-660.
DOI URL |
[19] |
C.R. Hutchinson, F. de Geuser, Y. Chen, A. Deschamps, Acta Mater. 74 (2014) 96-109.
DOI URL |
[20] |
B.L. Gyorffy, G.M. Stocks, Phys. Rev. Lett. 50 (1983) 374-377.
DOI URL |
[21] |
W.W. Sun, Y.M. Zhu, R. Marceau, L.Y. Wang, Q. Zhang, X. Gao, C. Hutchinson, Science 363 (2019) 972-975.
DOI URL |
[22] |
J. Pešička, R. Kužel, A. Dronhofer, G. Eggeler, Acta Mater. 51 (2003) 4847-4862.
DOI URL |
[23] |
Y.F. Shen, C.M. Wang, X. Sun, Mater. Sci. Eng. A 528 (2011) 8150-8156.
DOI URL |
[24] |
B. Gludovatz, E.P. George, R.O. Ritchie, JOM 67 (2015) 2262-2270.
DOI URL |
[25] |
W.G. Nöhring, W.A. Curtin, Acta Mater. 158 (2018) 95-117.
DOI URL |
[26] | A.G. Khachaturyan, Acta Crystallogr. A 41 (1985) 208. |
[27] |
J. Chen, Z.H. Yao, X.B. Wang, Y.K. Lu, X.H. Wang, Y. Liu, X.H. Fan, Mater. Chem. Phys. 210 (2018) 136-145.
DOI URL |
[28] |
F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, E.P. George, Acta Mater. 61 (2013) 5743-5755.
DOI URL |
[29] |
L. Guo, X.Q. Ou, S. Ni, Y. Liu, M. Song, Mater. Sci. Eng. A 746 (2019) 356-362.
DOI URL |
[30] |
J.Y. Ko, S.I. Hong, J. Alloy. Compd. 743 (2018) 115-125.
DOI URL |
[31] | L. Guo, J. Gu, X. Gong, K. Li, S. Ni, Y. Liu, M. Song, Micron 126 (2019) 102739. |
[32] |
B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345 (2014) 1153-1158.
DOI PMID |
[33] |
A. Gali, E.P. George, Intermetallics 39 (2013) 74-78.
DOI URL |
[34] |
C. Haase, L.A. Barrales-Mora, Acta Mater. 150 (2018) 88-103.
DOI URL |
[35] |
J. Gu, M. Song, Scr. Mater. 162 (2019) 345-349.
DOI URL |
[36] |
S.J. Sun, Y.Z. Tian, H.R. Lin, X.G. Dong, Y.H. Wang, Z.J. Zhang, Z.F. Zhang, Mater. Des. 133 (2017) 122-127.
DOI URL |
[37] |
A.J. Zaddach, R.O. Scattergood, C.C. Koch, Mater. Sci. Eng. A 636 (2015) 373-378.
DOI URL |
[38] |
S.H. Joo, H. Kato, M.J. Jang, J. Moon, C.W. Tsai, J.W. Yeh, H.S. Kim, Mater. Sci. Eng. A 689 (2017) 122-133.
DOI URL |
[39] |
J.Y. He, W.H. Liu, H. Wang, Y. Wu, X.J. Liu, T.G. Nieh, Z.P. Lu, Acta Mater. 62 (2014) 105-113.
DOI URL |
[40] |
H. Shahmir, J. He, Z. Lu, M. Kawasaki, T.G. Langdon, Mater. Sci. Eng. A 676 (2016) 294-303.
DOI URL |
[41] |
S.H. Joo, H. Kato, M.J. Jang, J. Moon, E.B. Kim, S.J. Hong, H.S. Kim, J. Alloy. Compd. 698 (2017) 591-604.
DOI URL |
[42] |
S. Guan, D. Wan, K. Solberg, F. Berto, T. Welo, T.M. Yue, K.C. Chan, Mater. Sci. Eng. A 761 (2019) 138056.
DOI URL |
[43] |
R.D. Li, P.D. Niu, T.C. Yuan, P. Cao, C. Chen, K.C. Zhou, J. Alloys Compd. 746 (2018) 125-134.
DOI URL |
[44] |
Z.G. Zhu, Q.B. Nguyen, F.L. Ng, X.H. An, X.Z. Liao, P.K. Liaw, S.M.L. Nai, J. Wei, Scr. Mater. 154 (2018) 20-24.
DOI URL |
[45] |
A. Tamm, A. Aabloo, M. Klintenberg, M. Stocks, A. Caro, Acta Mater. 99 (2015) 307-312.
DOI URL |
[46] | J. Ding, Q. Yu, M. Asta, R.O. Ritchie, PNAS 115 (2018) 8919-8924. |
[47] | J. Ding, H.Y. Chen, Y.D. Wang, Z.H. Nie, R.G. Li, D.Y. Cong, W.J. Liu, F. Ye, Y.Z. Liu, P.Y. Cao, F.Y. Tian, X. Shen, R.C. Yu, L. Vitos, M.H. Zhang, S.L. Li, X.Y. Zhang, H. Zheng, J.F. Mitchell, Y. Ren, Nat. Mater. 19 (2020) 712-718. |
[48] |
Z.F. Lei, Y. Wu, J.Y. He, X.J. Liu, H. Wang, S.H. Jiang, L. Gu, Q.H. Zhang, B. Gault, D. Raabe, Z.P. Lu, Sci. Adv. 6 (2020) eaba7802.
DOI URL |
[49] |
A. Hirata, L.J. Kang, T. Fujita, B. Klumov, K. Matsue, M. Kotani, A.R. Yavari, M. W. Chen, Science 341 (2013) 376-379.
DOI PMID |
[50] |
H.W. Sheng, W.K. Luo, F.M. Alamgir, J.M. Bai, E. Ma, Nature 439 (2006) 419-425.
DOI URL |
[51] | M.Y. He, Y.F. Shen, N. Jia, P.K. Liaw, Appl. Mater. Today 25 (2021) 101162. |
[52] |
W. Püschl, Prog. Mater. Sci. 47 (2002) 415-461.
DOI URL |
[1] | Seyed Amir Arsalan Shams, Jae Wung Bae, Jae Nam Kim, Hyoung Seop Kim, Taekyung Lee, Chong Soo Lee. Origin of superior low-cycle fatigue resistance of an interstitial metastable high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 115(0): 115-128. |
[2] | Yinling Zhang, Aihan Feng, Shoujiang Qu, Jun Shen, Daolun Chen. Microstructure and low cycle fatigue of a Ti2AlNb-based lightweight alloy [J]. J. Mater. Sci. Technol., 2020, 44(0): 140-147. |
[3] | Zhenming Li, Qigui Wang, Alan A. Luo, Jichun Dai, Hui Zou, Liming Peng. Effect of heat treatment on strain-controlled fatigue behavior of cast Mg-Nd-Zn-Zr alloy [J]. J. Mater. Sci. Technol., 2018, 34(11): 2091-2099. |
[4] | WANG Zhongguang SUN Zhengming YU Weicheng ** State Key Laboratory for Fatigue and Fracture of Materials,Institute of Metal Research,Academia Sinica,Shenyang.110015,China+ To whom correspondence should be addressed. Fatigue Behaviour of Metal Matrix Composites [J]. J Mater Sci Technol, 1992, 8(4): 235-248. |
[5] | SUN Zhengming;WANG Zhongguang;AI Suhua Institute of Metal Research, Academia Sinica, Shenyang, China. To whom correspondence should be addressed.. The Study of Dual-phase Steel after Cyclic Deformation at Various Strain Amplitudes [J]. J Mater Sci Technol, 1989, 5(6): 415-420. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||