J. Mater. Sci. Technol. ›› 2022, Vol. 104: 163-171.DOI: 10.1016/j.jmst.2021.06.056
• Research Article • Previous Articles Next Articles
Chang Liu, Hongying Li, Rui Cheng, Jiazhuang Guo, Guo-Xing Li, Qing Li, Cai-Feng Wang*(), Xiaoning Yang*(
), Su Chen*(
)
Received:
2021-04-23
Revised:
2021-06-18
Accepted:
2021-06-21
Published:
2022-03-30
Online:
2021-09-08
Contact:
Cai-Feng Wang,Xiaoning Yang,Su Chen
About author:
chensu@njtech.edu.cn (S. Chen).Chang Liu, Hongying Li, Rui Cheng, Jiazhuang Guo, Guo-Xing Li, Qing Li, Cai-Feng Wang, Xiaoning Yang, Su Chen. Facile synthesis, high fluorescence and flame retardancy of carbon dots[J]. J. Mater. Sci. Technol., 2022, 104: 163-171.
Fig. 1. Synthesis and Characterizations of CDs. (a) Schematic solvothermal treatment of PPC with ethylenediamine yielding brown solution of CDs with bright blue fluorescence. (b) TEM image of CDs. Inset: particle size distribution of CDs. (c) HRTEM image of CDs. (d) XRD pattern of CDs. (e) XPS spectra of survey scan, and high-resolution N1s, O1s and C1s XPS spectra of CDs. (f) Raman spectrum of CDs. (g) UV-Vis absorption and PL emission spectra of CDs. (h) Fluorescence decay of CDs.
Fig. 2. Fluorescence applications of CDs. (a) Continuous production of CD-loaded PS supraballs via microfluidic technique. (b) TEM image of CD-loaded PS microspheres. (c) Confocal microscope images of fluorescent supraballs. (d) Scheme of inkjet printing and photographs of printed patterns obtained by using CD-loaded PS microspheres as fluorescent ink.
Fig. 3. Combustion resistance of CDs. (a-c) Photographs and combustion test of PU foams loaded with different concentrations of CDs. (d-g) Combustion process of PU/CDs-20 wt% foam. The PU/CDs-20 wt% foam did not ignite on the flame for 20 s but the stick got fire. (h) TGA curves of PU and PU/CDs-20 wt% foams measured in air with a heating rate of 40 ℃ min-1. (i) TG-MS curves of CDs. (j) HRR curves of PU, PU/CDs-10 wt% and PU/CDs-20 wt% foams. (k) Comparison of P-HRR reduction of different flame-retardant additives for PU foams, including Modified CNT [41], halogen and composite additives [42], polydopamine [43], Multi-layered MMT/CNT [44] and CDs in this case. (l) The mechanism of flame retardancy of CDs for polymeric foams and fibers.
Fig. 4. (a) SEM images of PU/CDs and (b) PAN/CDs nanofibers films. (c) HRR curves of PU/CDs nanofiber films with different concentrations of CDs. (d) HRR curves of PAN/CDs nanofiber films with different concentrations of CDs.
Fig. 5. Combustion process of CDs/PU from MD simulation. Unit structure of (a) CDs and (b) PU. The colors represent different atoms as follows; white: H, red: O, green: C, and blue: N. Combustion simulation process for (c) CDs combustion, (d) PU combustion and (e) PU/CDs combustion. The center panel (c-e): the weight proportion of the four types products after combustion.
[1] |
S.Y. Lim, W. Shen, Z. Gao, Chem. Soc. Rev. 44 (2015) 362-381.
DOI URL |
[2] |
J. Liu, Y. Liu, N. Liu, Y. Han, X. Zhang, H. Huang, L. Yeshayahu, S-T. Lee, J. Zhong, Z. Kang, Science 347 (2015) 970-974.
DOI URL |
[3] |
H. Choi, S.J. Ko, Y. Choi, P. Joo, T. Kim, B.R. Lee, J.W. Jung, H.J. Choi, M. Cha, J.R. Jeong, Nat. Photonic 7 (2013) 732-738.
DOI URL |
[4] | M.A. Miller, Sci. Transl. Med. 9 (2017) 399. |
[5] |
Y. H., Y. Liu, Z. Guo, B. Lei, J. Zhuang, X. Zhang, Z. Liu, Nat. Commun. 10 (2019) 1789.
DOI URL |
[6] |
D. Qu, X. Miao, B. Nie, D. Yang, Z. Sun, H. Fan, Y. Zhao, H. Fan, Z. Sun, Adv. Mater. 30 (2017) 1704740.
DOI URL |
[7] |
Y. Liu, J. Zhang, X. Zhao, W. Li, J. Wang, Y. Gao, Y. Cui, S. Xu, X. Luo, Chem. Commun. 56 (2020) 4074-4077.
DOI URL |
[8] |
V. Sharma, P. Tiwarib, S.M. Mobin, J. Mater. Chem. B 5 (2017) 8904-8924.
DOI PMID |
[9] | K. Jiang, Y. Wang, X. Gao, C. Cai, H. Lin, Angew. Chem. Int. Ed. 57 (2018) 1-6. |
[10] |
J. Wang, C.F. Wang, S. Chen, Angew. Chem. Int. Ed. 51 (2012) 9297-9301.
DOI URL |
[11] |
P.J. Yunker, T. Still, M.A. Lohr, A.G. Yodh, Nature 476 (2011) 308-311.
DOI URL |
[12] |
Y. Chen, M. Zheng, Y. Xiao, H. Dong, H. Zhang, J. Zhuang, H. Hu, B. Lei, Y. Liu, Adv. Mater. 28 (2016) 312-318.
DOI URL |
[13] |
N.J. Kang, D.Y. Wang, B. Kutlu, P.C. Zhao, A. Leuteritz, U. Wagenknecht, G. Hein-rich, ACS Appl. Mater. Interfaces 5 (2013) 8991-8997.
DOI URL |
[14] |
S. Pavlidou, C.D. Papaspyrides, Prog. Polym. Sci. 33 (2008) 1119-1198.
DOI URL |
[15] |
J.M. Garces, D.J. Moll, J. Bicerano, R. Fibiger, D.G. Mcleod, Adv. Mater. 12 (2000) 1835-1839.
DOI URL |
[16] |
L. Costes, F. Laoutid, S. Brohez, P. Dubois, Mater. Sci. Eng. R Rep. 117 (2017) 1-25.
DOI URL |
[17] |
A. Blum, M.D. Gold, B.N. Ames, F.R. Jones, E.A. Hett, R.C. Dougherty, E.C. Horn-ing, I. Dzidic, D.I. Carroll, R.N. Stillwell, J.P. Thenot, Science 201 (1978) 1020.
PMID |
[18] |
M.D. Gold, A. Blum, B.N. Ames, Science 200 (1978) 785.
PMID |
[19] |
A. Blum, B.N. Ames, Science 195 (1977) 17.
PMID |
[20] |
B. Wu, G. Zhu, A. Dufresne, N. Lin, ACS Appl. Mater. Interfaces 11 (2019) 16048-16058.
DOI URL |
[21] | Anon, Plast. Addit. Compd. 6 (2004) 26-29. |
[22] |
X. Wang, E.N. Kalalia, J.T. Wana, D.Y. Wanga, Prog. Polym. Sci. 69 (2017) 22-46.
DOI URL |
[23] |
C. He, J. Huang, S. Li, K. Meng, L. Zhang, Z. Chen, Y. Lai, ACS Sustain. Chem. Eng. 6 (2018) 927-936.
DOI URL |
[24] |
Y. Han, X. Zhang, X. Wu, C. Lu, ACS Sustain. Chem. Eng. 3 (2015) 1853-1859.
DOI URL |
[25] |
T.R. Aghdam, Z. Shariatinia, M. Hakkarainen, V.H. Aslc, J. Hazard. Mater. 381 (2020) 121013.
DOI URL |
[26] |
L.W. Hao, J.D. Liu, Q. Li, R.K. Qing, Y.Y. He, J. Guo, G. Li, L. Zhu, S. Chen, J. Mater. Sci. Technol. 81 (2021) 203-211.
DOI URL |
[27] |
A.Q Xie, J. Guo, L. Zhu, S. Chen, Chem. Eng. J. 415 (2021) 128950.
DOI URL |
[28] |
Z. Yu, L. Chen, S. Chen, J. Mater. Chem. 20 (2010) 6182-6191.
DOI URL |
[29] |
S.N. Yin, C.F. Wang, Z.Y. Yu, J. Wang, S.S. Liu, S. Chen, Adv. Mater. 23 (2011) 2915-2919.
DOI URL |
[30] |
J. Zhang, Z. Zhu, Z. Yu, L. Ling, C.F. Wang, S. Chen, Mater. Horiz. 6 (2019) 90-96.
DOI |
[31] |
S. Wu, M. Qiu, Z. Tang, J. Liu, B. Guo, Macromolecules 50 (2017) 3244.
DOI URL |
[32] |
S.N. Raja, A.J. Luong, W. Zhang, L. Lin, R.O. Ritchie, A.P. Alivisatos, Chem. Mater. 28 (2016) 2540-2549.
DOI URL |
[33] | R. Atchuda, T. Edison, K.R. Aseer, S. Perumal, N. Karthik, Y.R. Lee, Biosens. Bio-electron. 99 (2018) 303-311. |
[34] |
J. Ge, Q. Jia, W. Liu, L. Guo, Q. Liu, M. Lan, H. Zhang, X. Meng, P. Wang, Adv. Mater. 27 (2015) 4169-4177.
DOI URL |
[35] |
S. Liu, J. Tian, L. Wang, Y. Zhang, X. Qin, Y. Luo, A.M. Asiri, A.O. Al-Youbi, X. Sun, Adv. Mater. 24 (2012) 2037-2041.
DOI URL |
[36] |
L.L. Zhu, Y.J. Yin, C.F. Wang, S. Chen, J. Mater. Chem. C 1 (2013) 4925-4932.
DOI URL |
[37] |
D. Li, P. Jing, L. Sun, Y. An, X. Shan, X. Lu, D. Zhou, D. Han, D. Shen, Y. Zhai, S. Qu, Adv. Mater. 30 (2018) 1705913.
DOI URL |
[38] |
L. Wang, Y. Wang, T. Xu, H. Liao, C. Yao, Y. Liu, Z. Li, Z. Chen, D. Pan, L. Sun, Nat. Commun. 5 (2014) 5357-5365.
DOI URL |
[39] |
N.S. Baker, G.A. Baker, Angew. Chem. Int. Ed. 49 (2010) 6726-6774.
DOI URL |
[40] |
T.R. Aghdam, Z. Shariatinia, M. Hakkarainen, V.H. Aslc, J. Hazard. Mater. 381 (2020) 121013.
DOI URL |
[41] |
Y.S. Kim, R. Davis, Thin Solid Films 550 (2014) 184-189.
DOI URL |
[42] | L.N. Gordon, C.A. Wilkie, ACS Symp. Ser. 797 (2001) 403. |
[43] |
J.H.V. Cho, V. Shanmuganathan, K. Jones, A.R. Nazarenko, S. Ellison, J. Christo-pher, Chem. Mater. 27 (2015) 6784-6790.
DOI URL |
[44] |
H.F. Pan, Y. Pan, W. Wang, L. Song, Y. Hu, K.M. Liew, Ind. Eng. Chem. Res. 53 (2014) 14315-14321.
DOI URL |
[45] |
Z. Zhu, R. Cheng, L. Ling, Q. Li, S. Chen, Angew. Chem. Int. Ed. 59 (2020) 3099-3105.
DOI URL |
[46] |
S.W. Wu, M. Qiu, Z.H. Tang, J. Liu, B.C. Guo, Macromolecules 50 (2017) 3244-3253.
DOI URL |
[47] |
F.C. Marcano, A.M. Kamat, M.F. Russo, V. Duin, J.P. Mathews, Combust Flame 159 (2012) 1272-1285.
DOI URL |
[48] |
L. Vallan, E.P. Urriolabeitia, R. Fernando, J.M. Matxain, C-V. Ruben, T. Nikos, A.M. Benito, W.K. Maser, J. Am. Chem. Soc. 140 (2018) 12862-12869.
DOI URL |
[49] |
M. Zheng, X. Li, J. Liu, Ze. Wang, X. Gong, L. Guo, W. Song, Energy Fuel 28 (2013) 522-534.
DOI URL |
[50] |
Z. Zhang, L. Guo, H. Zhang, J.H. Zhan, Int. J. Hydrog. Energy 44 (2019) 25335-25346.
DOI URL |
[1] | Wei Wu, Wanjing Zhao, Xianjing Gong, Qijun Sun, Xianwu Cao, Yujun Su, Bin Yu, Robert K.Y. Li, Roy A.L. Vellaisamy. Surface decoration of Halloysite nanotubes with POSS for fire-safe thermoplastic polyurethane nanocomposites [J]. J. Mater. Sci. Technol., 2022, 101(0): 107-117. |
[2] | Yan Ma, Muxin Yang, Fuping Yuan, Xiaolei Wu. Deformation induced hcp nano-lamella and its size effect on the strengthening in a CoCrNi medium-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 82(0): 122-134. |
[3] | Shuang Zhang, Fei Wang, Ping Huang. Enhanced Hall-Petch strengthening in graphene/Cu nanocomposites [J]. J. Mater. Sci. Technol., 2021, 87(0): 176-183. |
[4] | Wenshuo Liang, Guimin Lu, Jianguo Yu. Theoretical prediction on the local structure and transport properties of molten alkali chlorides by deep potentials [J]. J. Mater. Sci. Technol., 2021, 75(0): 78-85. |
[5] | Xiangfu Liu, Rongwen Wang, Jinming Ma, Jibin Zhang, Pengfei Jiang, Yao Wang, Guoli Tu. Durable metal-enhanced fluorescence flexible platform by in-situ growth of micropatterned Ag nanospheres [J]. J. Mater. Sci. Technol., 2021, 69(0): 89-95. |
[6] | Hanxun Wang, Baichun Hu, Zisen Gao, Fengjiao Zhang, Jian Wang. Emerging role of graphene oxide as sorbent for pesticides adsorption: Experimental observations analyzed by molecular modeling [J]. J. Mater. Sci. Technol., 2021, 63(0): 192-202. |
[7] | Yuwei Ye, Hao Chen, Yangjun Zou, Haichao Zhao. Study on self-healing and corrosion resistance behaviors of functionalized carbon dot-intercalated graphene-based waterborne epoxy coating [J]. J. Mater. Sci. Technol., 2021, 67(0): 226-236. |
[8] | Dandan Wang, Junping Ju, Shuang Wang, Yeqiang Tan. Research progress on the luminescence of biomacromolecules [J]. J. Mater. Sci. Technol., 2021, 76(0): 60-75. |
[9] | Jun Jiang, Pengwan Chen, Weifu Sun. Monitoring micro-structural evolution during aluminum sintering and understanding the sintering mechanism of aluminum nanoparticles: A molecular dynamics study [J]. J. Mater. Sci. Technol., 2020, 57(0): 92-100. |
[10] | Ling Jin, Li Zhang, Lei Yang, Xingrong Wu, Cheng Zhang, Kang Wei, Lifang He, Xinya Han, Hongbin Qiao, Abdullah M. Asiri, Khalid A. Alamry, Kui Zhang. Orange-red, green, and blue fluorescence carbon dots for white light emitting diodes [J]. J. Mater. Sci. Technol., 2020, 50(0): 184-191. |
[11] | S.H. Chen, T. Li, W.J. Chang, H.D. Yang, J.C. Zhang, H.H. Tang, S.D. Feng, F.F. Wu, Y.C Wu. On the formation of shear bands in a metallic glass under tailored complex stress fields [J]. J. Mater. Sci. Technol., 2020, 53(0): 112-117. |
[12] | Shidong Feng, n Li, K.C. Chan, Lei Zhao, Limin Wang, Riping Liu. Enhancing strength and plasticity by pre-introduced indent-notches in Zr36Cu64 metallic glass: A molecular dynamics simulation study [J]. J. Mater. Sci. Technol., 2020, 43(0): 119-125. |
[13] | K.Q. Li, Z.J. Zhang, J.X. Yan, J.B. Yang, Z.F. Zhang. Mechanism transition of cross slip with stress and temperature in face-centered cubic metals [J]. J. Mater. Sci. Technol., 2020, 57(0): 159-171. |
[14] | Jiahao Cheng, Xiaohua Hu, Xin Sun, Anupam Vivek, Glenn Daehn, David Cullen. Multi-scale characterization and simulation of impact welding between immiscible Mg/steel alloys [J]. J. Mater. Sci. Technol., 2020, 59(0): 149-163. |
[15] | Yuwei Ye, Zilong Jiang, Yangjun Zou, Hao Chen, Shengda Guo, Qiumin Yang, Liyong Chen. Evaluation of the inhibition behavior of carbon dots on carbon steel in HCl and NaCl solutions [J]. J. Mater. Sci. Technol., 2020, 43(0): 144-153. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||