J. Mater. Sci. Technol. ›› 2022, Vol. 103: 177-185.DOI: 10.1016/j.jmst.2021.06.030
• Research Article • Previous Articles Next Articles
Xun Fana, Fengchao Wangb, Qiang Gaoa, Yu Zhanga, Fei Huangc, Ronglin Xiaoc, Jianbin Qina, Han Zhangb,d,**(
), Xuetao Shia,*(
), Guangcheng Zhanga,*(
)
Received:2021-05-04
Revised:2021-06-08
Accepted:2021-06-09
Published:2022-03-20
Online:2021-08-27
Contact:
Han Zhang,Xuetao Shi,Guangcheng Zhang
About author:** Han Zhang, School of Engineering and Materials Sci-ence, Queen Mary University of London, Mile End Road, London E1 4NS, UK. E-mail addresses: han.zhang@qmul.ac.uk (H. Zhang).Xun Fan, Fengchao Wang, Qiang Gao, Yu Zhang, Fei Huang, Ronglin Xiao, Jianbin Qin, Han Zhang, Xuetao Shi, Guangcheng Zhang. Nature inspired hierarchical structures in nano-cellular epoxy/graphene-Fe3O4 nanocomposites with ultra-efficient EMI and robust mechanical strength[J]. J. Mater. Sci. Technol., 2022, 103: 177-185.
Fig. 1. Reduced graphene oxide-Fe3O4 (rGO-Fe3O4) hybrid nanoparticle: (A) schematic of fabrication process of rGO-Fe3O4 aerogel (graphene oxide (GO) suspension concentration: 5.0 mg/ml, GO:Fe3O4=1: 1.3, stirring speed: 2000 r/min and GO:N2H4=1:1); (B) magnetic rGO-Fe3O4 aerogel digital photograph and SEM images with different magnifications; (C) SEM image of rGO-Fe3O4 nanoparticle (c-1) and the corresponding element mapping images of C (red, c-2), O (cyan, c-3) and Fe (yellow, c-4) elements; TEM images of (D) GO, (E) rGO, (F) Fe3O4 and (G) rGO-Fe3O4 nanoparticles.
Fig. 2. Fabrication process and nacre-like morphologies of bio-inspired m-EP/rGO and m-EP/rGO-Fe3O4 nanocomposites: (A) (a-1) natural nacre shell with hierarchical microstructure [40], and (a-2) schematic illustrations of layered nanocomposite film fabricated by compression molding; (B) digital photographs of (b-1) m-EP/rGO-Fe3O4 film with length of 75 mm and thickness of 100 μm, (b-2) good magnetic property, (b-3 and 4) flexible layered microstructure examined by SEM; TEM images demonstrating the dispersion of (C) 4.76 wt.% rGO in m-EP/rGO film and (E) 13.04 wt.% rGO-Fe3O4 in m-EP/rGO-Fe3O4 film; SEM images of cross-sectional fractures of nanocomposite films with (D) 50.00 wt.% rGO and (F) 75.00 wt.% rGO-Fe3O4.
Fig. 3. Foamability of neat epoxy and epoxy modified with hyperbranched epoxy (E102) and organic precursor (KM) : (A) (a-1) SEM and (a-2) TEM images of cured neat epoxy, (a-3) cross-sectional fracture of neat epoxy after foaming; (B) nanoindentation measurement: (b-1) load-displacement curves, (b-2) the corresponding elasticity modulus and (b-3) hardness values of specimens of various epoxy-based matrices (weight ratios of epoxy, E102 and KM are: 100:0:0, 100:0:5, 100:30:0, 100:30:5); (C) (c-1) SEM, (c-2) TEM for modified-epoxy (m-EP) matrix (100: 30: 5) and (c-3) cross-sectional fracture with statistical average cell size of m-EP foam.
Fig. 4. Micro-structures and properties of layered m-EP/rGO and m-EP/rGO-Fe3O4 nanocomposite foams: SEM images of (A) m-EP/rGO foams with (a-1) 9.09 wt.% rGO and (a-2) 50.00 wt.% rGO content, and (B) m-EP/rGO-Fe3O4 foams with (b-1) 23.08 wt.% and (b-2) 75.00 wt.% rGO-Fe3O4 content; (C) average cell size and cell density as a function of rGO (c-1) and rGO-Fe3O4 (c-2) loading; (D) densities of (d-1) m-EP/rGO and (d-2) m-EP/rGO-Fe3O4 nanocomposites and foams as a function of rGO and rGO-Fe3O4 loading (foaming time is 5s); (E) tensile stress-strain curves of m-EP foam under different foaming time, showing optimized mechanical performance based on 5s foaming time; tensile strength and modulus of (F) m-EP/rGO and (G) m-EP/rGO-Fe3O4 films with different filler contents before and after foaming.
Fig. 5. Functional performance of bio-inspired hierarchical m-EP/rGO and m-EP/rGO-Fe3O4 solids and foams: (A) electrical conductivity of m-EP/rGO solids and foams, (A' and A'') total SE (SET) of m-EP/rGO solid and foams; (B) electrical conductivity of m-EP/ rGO-Fe3O4 solids and foams, (B' and B'') SET of m-EP/ rGO-Fe3O4 solid and foams; reflected SE (SER), absorbed SE (SEA), SET and specific SET/thickness (SSET/t) properties of (C) m-EP/rGO and (C') m-EP/rGO-Fe3O4 solids and foams; (D) permittivity and (D') permeability of m-EP/rGO-Fe3O4 foams with different rGO-Fe3O4 contents (23.08 wt.%, 47.37 wt.% and 75.00 wt.%); (E) comparison of EMI performance of the nanocomposite solids and foams with previously reported shielding materials from traditional methods; (F) schematic illustration of the shieling mechanism of current layered nanocomposites with nano-porous structure.
| [1] |
E. Munch, M.E. Launey, D.H. Alsem, E. Saiz, A.P. Tomsia, R.O. Ritchie, Science 322 (2008) 1516-1520.
DOI PMID |
| [2] |
P. Liu, Z. Jin, G. Katsukis, L.W. Drahushuk, S. Shimizu, C.J. Shih, E.D. Wetzel, J.K. Taggart-Scarff, B. Qing, K.J.V. Vliet, R. Li, B.L. Wardle, M.S. Strano, Science 353 (2016) 364-367.
DOI URL |
| [3] |
Z. Wang, J. Wang, J. Ayarza, T. Steeves, Z. Hu, S. Manna1, A.P. Esser-Kahn, Nat. Mater. 20 (2021) 869-874.
DOI URL |
| [4] |
S.M. Liang, H.M. Ji, X.W. Li, J. Mater. Sci. Technol. 44 (2020) 1-11.
DOI |
| [5] | S. Chisca, V.E. Musteata, R. Sougrat, A.R. Behzad, S.P. Nunes, Sci. Adv. 4 (2018) 0713. |
| [6] |
D. Li, X. Bu, Z. Xu, Y. Luo, H. Bai, Adv. Mater. 32 (2020) 2001222.
DOI URL |
| [7] |
H. Zhao, Z. Yang, L. Guo, NPG Asia Mater. 10 (2018) 1-22.
DOI URL |
| [8] |
Y. Yang, X. Li, M. Chu, H. Sun, J. Jin, K. Yu, Q. Wang, Q. Zhou, Y. Chen, Sci. Adv. 5 (2019) 9490.
DOI PMID |
| [9] |
P. Song, B. Liu, H. Qiu, X. Shi, D. Cao, J. Gu, Compos. Commun. 24 (2021) 100653.
DOI URL |
| [10] |
P. Song, B. Liu, C. Liang, K. Ruan, H. Qiu, Z. Ma, Y. Guo, J. Gu, Nano Micro Lett. 13 (2021) 91.
DOI URL |
| [11] |
J.H. Cai, X.H. Tang, X.D. Chen, M. Wang, Compos. Part A Appl. Sci. Manuf. 140 (2021) 106188.
DOI URL |
| [12] |
X. Fan, Q. Gao, Y. Gao, G. Zhang, F. Huang, R. Xiao, W. Liu, F. Wang, J. Qin, E. Bilotti, H. Zhang, X. Shi, G. Zhang, Compos. Sci. Technol. 215 (2021)109000.
DOI URL |
| [13] |
J. Li, X. Zhang, Y. Ding, S. Zhao, Z. Ma, H. Zhang, X. He, D. Cao, J. Gu, Chem. Eng. J. 427 (2022) 131937.
DOI URL |
| [14] |
S. Zhao, H.B. Zhang, J.Q. Luo, Q.W. Wang, B. Xu, S. Hong, Z.Z. Yu, ACS Nano 12 (2018) 11193-11202.
DOI PMID |
| [15] |
Y. Zhang, K. Ruan, X. Shi, H. Qiu, Y. Pan, Y. Yan, J. Gu, Carbon 175 (2021) 271-280.
DOI URL |
| [16] | H. Zhang, T. Peijs, in: Fiber-Reinforced Nanocomposites: Fundamentals and Ap- plications, Elsevier, 2020, pp. 183-198. |
| [17] | H. Zhang, E. Bilotti, T. Peijs, in: The Structural Integrity of Carbon Fiber Com- posites, Springer International Publishing, 2017, pp. 101-116. |
| [18] |
G. Santagiuliana, O.T. Picot, M. Crespo, H. Porwal, H. Zhang, Y. Li, L. Rubini, S. Colonna, A. Fina, E. Barbieri, A.B. Spoelstra, G. Mirabello, J.P. Patterson, L. Botto, N.M. Pugno, T. Peijs, E. Bilotti, ACS Nano 12 (2018) 9040-9050.
DOI PMID |
| [19] |
J. Joseph, A.K. Koroth, D.A. John, A.M. Sidpara, J. Paul, J. Appl. Polym. Sci. 136 (2019) 47792.
DOI URL |
| [20] | H. Zhang, Y. Liu, S. Huo, J. Briscoe, W. Tu, O. Picot, et al., Compos.Sci. Technol. 139 (2017) 138-145. |
| [21] |
J. Liang, Y. Wang, Y. Huang, Y. Ma, Z. Liu, J. Cai, C. Zhang, H. Gao, Y. Chen, Carbon 47 (2009) 922-925.
DOI URL |
| [22] |
Y.J. Wan, S.H. Yu, W.H. Yang, P.L. Zhu, R. Sun, C.P. Wong, W.H. Liao, RSC Adv. 6 (2016) 56589-56598.
DOI URL |
| [23] |
Y. Huangfu, C. Liang, Y. Han, H. Qiu, P. Song, L. Wang, J. Kong, J. Gu, Compos. Sci. Technol. 169 (2019) 70-75.
DOI |
| [24] |
W.L. Song, M.S. Cao, M.M. Lu, S. Bi, C.Y. Wang, J. Liu, J. Yuan, L.Z. Fan, Carbon 66 (2014) 67-76.
DOI URL |
| [25] |
L. Liang, P. Xu, Y. Wang, Y. Shang, J. Ma, F. Su, Y. Feng, C. He, Y. Wang, C. Liu, Chem. Eng. J. 395 (2020) 125209.
DOI URL |
| [26] |
J. Chen, X. Liao, W. Xiao, J. Yang, Q. Jiang, G. Li, ACS Sustain. Chem. Eng. 7 (2019) 9904-9915.
DOI |
| [27] |
M. Wang, X.H. Tang, J.H. Cai, H. Wu, J.B. Shen, S.Y. Guo, Carbon 177 (2021) 377-402.
DOI URL |
| [28] |
H.B. Zhang, Q. Yan, W.G. Zheng, Z. He, Z.Z. Yu, ACS Appl. Mater. Interfaces 3 (2011) 918-924.
DOI URL |
| [29] |
H. Zhang, G. Zhang, Q. Gao, M. Zong, M. Wang, J. Qin, Compos. Part A Appl. Sci. Manuf. 130 (2020) 105773.
DOI URL |
| [30] |
J. Yang, Y. Yang, H. Duan, Y.L.G. Zhao, J. Mater. Sci. Mater. Electron. 28 (2017) 5925-5930.
DOI URL |
| [31] |
Q. Li, L. Chen, J. Ding, J. Zhang, X. Li, K. Zheng, X. Zhang, X. Tian, Carbon 104 (2016) 90-105.
DOI URL |
| [32] |
Y. Mao, J. Yuan, J. Zhong, J. Phys. Condens. Matter 20 (2008) 115209.
DOI URL |
| [33] |
H. Fang, H. Guo, Y. Hu, Y. Ren, P.C. Hsu, S.L. Bai, Compos. Sci. Technol. 188 (2020) 107975.
DOI URL |
| [34] |
N. Yousefi, X. Lin, Q. Zheng, X. Shen, J.R. Pothnis, J. Jia, E. Zussman, J.K. Kim, Carbon 59 (2013) 406-417.
DOI URL |
| [35] |
M. Koyama, Z. Zhang, M. Wang, D. Ponge, D. Raabe, K. Tsuzaki, H. Noguchi, C.C. Tasan, Science 355 (2017) 1055-1057.
DOI URL |
| [36] |
X. Chen, X. Deng, N.Y. Kim, Y. Wang, Y. Huang, L. Peng, M. Huang, X. Zhang, X. Chen, D. Luo, B. Wang, X. Wu, Y. Ma, Z. Lee, R.S. Ruoff, Carbon 132 (2018) 294-303.
DOI URL |
| [37] |
L.F. Cui, X.P. Wang, N. Chen, G.F. Zhang, L.T.A. Qu, J. Mater. Chem. A 5 (2017) 14508-14513.
DOI URL |
| [38] |
Y. Fei, M. Liang, Y. Chen, H. Zou, Ind. Eng. Chem. Res. 59 (2020) 154-165.
DOI URL |
| [39] | R. Thomas, C. Sinturel, J. Pionteck, H. Puliyalil, S. Thomas, Ind. Eng. Chem. Res. 51 (2012) 12178-12191. |
| [40] |
S. Wan, L. Jiang, Q. Cheng, Matter 3 (2020) 696-707.
DOI URL |
| [41] | B. Notario, J. Pinto, M.A. Rodriguez-Perez, Prog. Mater. Sci. 79 (2016) 93-139. |
| [42] | A. Ito, T. Semba, K. Taki, M. Ohshima, J. Appl. Polym. Sci. 131 (2014) 40407. |
| [43] |
L. Wang, C. Zhang, W. Gong, Y. Ji, S. Qin, L. He, Adv. Mater. 30 (2017) 1703992.
DOI URL |
| [44] |
V. Bernardo, J.M. Leon, M.A. Rodriguez-Perez, Mater. Lett. 255 (2019) 126587.
DOI URL |
| [45] |
Y. Wang, X. Liao, Y. Luo, Q. Yang, G. Li, J. Mater. Sci. Technol. 31 (2015) 463-466.
DOI URL |
| [46] |
X. Fan, G. Zhang, Q. Gao, J. Li, Z. Shang, H. Zhang, Y. Zhang, X. Shi, J. Qin, Chem. Eng. J. 372 (2019) 191-202.
DOI URL |
| [47] |
W. Xia, J. Song, D.D. Hsu, S. Keten, Macromolecules 49 (2016) 3810-3817.
DOI URL |
| [48] |
X. Yang, S. Fan, Y. Li, Y. Guo, Y. Li, K. Ruan, S. Zhang, J. Zhang, J. Kong, J. Gu, Compos. Part A Appl. Sci. Manuf. 128 (2020) 105670.
DOI URL |
| [49] |
S. Liu, S. Yin, J. Duvigneau, G.J. Vancso, ACS Nano 14 (2020) 1623-1634.
DOI URL |
| [50] |
S.E. Zakiyan, H. Azizi, I. Ghasemi, Compos. Sci. Technol. 157 (2018) 217-227.
DOI URL |
| [51] | J. Ling, W. Zhai, W. Feng, B. Shen, J. Zhang, W. Zheng, ACS Appl. Mater. Inter-faces 5 (2013) 2677-2684. |
| [52] |
D.C. Dykes, M.A. Hillmyer, ACS Sustain. Chem. Eng. 7 (2019) 1698-1706.
DOI URL |
| [53] |
G. Wang, G. Zhao, L. Zhang, Y. Mu, C.B. Park, Chem. Eng. J. 350 (2018) 1-11.
DOI URL |
| [54] |
M. Mirkhalaf, A.K. Dastjerdi, F. Barthelat, Nat. Commun. 5 (2014) 3166.
DOI PMID |
| [55] |
Z. Ma, S. Kang, J. Ma, L. Shao, A. Wei, C. Liang, J. Gu, B. Yang, D. Dong, L. Wei, Z. Ji, ACS Nano 13 (2019) 7578-7590.
DOI URL |
| [56] |
L. Wang, P. Song, C.T. Lin, J. Kong, J. Gu, Research 2020 (2020) 4093732.
DOI PMID |
| [57] | F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S.M. Hong, C.M. Koo, Y. Gogotsi, Science 353 (2016) 1136-1140. |
| [58] |
C. Liang, K. Ruan, Y. Zhang, J. Gu, ACS Appl. Mater. Interfaces 12 (2020) 18023-18031.
DOI URL |
| [59] |
J.H. Cai, J. Li, X.D. Chen, M. Wang, Chem. Eng. J. 393 (2020) 124805.
DOI URL |
| [60] |
X. Fan, G. Zhang, J. Li, Z. Shang, H. Zhang, Q. Gao, J. Qin, X. Shi, Compos. Part A Appl. Sci. Manuf. 121 (2019) 64-73.
DOI URL |
| [61] |
C. Liang, Y. Liu, Y. Ruan, H. Qiu, P. Song, J. Kong, H. Zhang, J. Gu, Compos. Part A Appl. Sci. Manuf. 139 (2020) 106143.
DOI URL |
| [62] |
G.Z. Wang, Z. Gao, G.P. Wan, S.W. Lin, P. Yang, Y. Qin, Nano Res. 7 (2014) 704-716.
DOI URL |
| [63] |
Z. Ma, S. Kang, J. Ma, L. Shao, Y. Zhang, C. Liu, A. Wei, X. Xiang, L. Wei, J. Gu, ACS Nano 14 (2020) 8368-8382.
DOI URL |
| [64] |
L. Wang, X. Shi, J. Zhang, Y. Zhang, J. Gu, J. Mater. Sci. Technol. 52 (2020) 119-126.
DOI |
| [65] |
Q. Gao, G. Zhang, X. Fan, H. Zhang, Y. Zhang, F. Huang, R. Xiao, X. Shi, J. Qin, Compos. Part A Appl. Sci. Manuf. 138 (2020) 106060.
DOI URL |
| [66] |
X.H. Tang, J. Li, Y. Wang, Y.X. Weng, M. Wang, Compos. B. Eng. 196 (2020) 108121.
DOI URL |
| [67] |
Z. Ma, J. Li, J. Zhang, A. He, Y. Dong, G. Tan, M. Ning, Q. Man, X. Liu, J. Mater. Sci. Technol. 81 (2021) 43-50.
DOI URL |
| [68] |
J. Li, Y. Wang, T.N. Yue, Y.N. Gao, Y.D. Shi, J.B. Shen, H. Wu, M. Wang, Compos. Sci. Technol. 206 (2021) 108681.
DOI URL |
| [69] |
R. Arias, P. Chu, D.L. Mills, Phys. Rev. B 71 (2005) 224410.
DOI URL |
| [1] | Lulu Zhang, Junchen Luo, Shu Zhang, Jun Yan, Xuewu Huang, Ling Wang, Jiefeng Gao. Interface sintering engineered superhydrophobic and durable nanofiber composite for high-performance electromagnetic interference shielding [J]. J. Mater. Sci. Technol., 2022, 98(0): 62-71. |
| [2] | Zhengzheng Guo, Penggang Ren, Zengping Zhang, Zhong Dai, Zhenxia Lu, Yanling Jin, Fang Ren. Fabrication of carbonized spent coffee grounds/graphene nanoplates/cyanate ester composites for superior and highly absorbed electromagnetic interference shielding performance [J]. J. Mater. Sci. Technol., 2022, 102(0): 123-131. |
| [3] | Kun Qian, Qifan Li, Alexander Sokolov, Chengju Yu, Piotr Kulik, Ogheneyunume Fitchorova, Yajie Chen, Chins Chinnasamy, Vincent G. Harris. Electromagnetic shielding effectiveness of amorphous metallic spheroidal- and flake-based magnetodielectric composites [J]. J. Mater. Sci. Technol., 2021, 83(0): 256-263. |
| [4] | Liyuan Han, Qiang Song, Kezhi Li, Xuemin Yin, Jiajia Sun, Hejun Li, Fengpei Zhang, Xinran Ren, Xi Wang. Hierarchical, seamless, edge-rich nanocarbon hybrid foams for highly efficient electromagnetic-interference shielding [J]. J. Mater. Sci. Technol., 2021, 72(0): 154-161. |
| [5] | Xuan Hao, Xiaowei Yin, Litong Zhang, Laifei Cheng. Dielectric, Electromagnetic Interference Shielding and Absorption Properties of Si3N4-PyC Composite Ceramics [J]. J. Mater. Sci. Technol., 2013, 29(3): 249-254. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
