J. Mater. Sci. Technol. ›› 2021, Vol. 95: 181-192.DOI: 10.1016/j.jmst.2021.04.020
• Research Article • Previous Articles Next Articles
Xiong Zhoua, Hui Wangb,c,*(
), Liping Guoa,*(
), Yiheng Chena, Fang Lia, Yunxiang Longa, Cheng Chena, Ziyang Xiea, Hongtai Luoa, Shaobo Mod
Received:2021-03-27
Revised:2021-04-22
Accepted:2021-04-25
Published:2021-12-30
Online:2021-05-25
Contact:
Hui Wang,Liping Guo
About author:guolp@whu.edu.cn (L. Guo).Xiong Zhou, Hui Wang, Liping Guo, Yiheng Chen, Fang Li, Yunxiang Long, Cheng Chen, Ziyang Xie, Hongtai Luo, Shaobo Mo. Effect of niobium content on irradiation microstructure and hardening in FeCrAl-based alloys[J]. J. Mater. Sci. Technol., 2021, 95: 181-192.
| Alloy | Fe | Cr | Al | Mo | Nb | Si | Y |
|---|---|---|---|---|---|---|---|
| 0Nb | 80.2 | 13.0 | 4.5 | 2.0 | 0 | 0.25 | 0.05 |
| 0.4Nb | 79.8 | 13.0 | 4.5 | 2.0 | 0.4 | 0.25 | 0.05 |
| 0.8Nb | 79.4 | 13.0 | 4.5 | 2.0 | 0.8 | 0.25 | 0.05 |
| 1.2Nb | 79.0 | 13.0 | 4.5 | 2.0 | 1.2 | 0.25 | 0.05 |
Table 1 Compositions of model FeCrAl alloys (wt%).
| Alloy | Fe | Cr | Al | Mo | Nb | Si | Y |
|---|---|---|---|---|---|---|---|
| 0Nb | 80.2 | 13.0 | 4.5 | 2.0 | 0 | 0.25 | 0.05 |
| 0.4Nb | 79.8 | 13.0 | 4.5 | 2.0 | 0.4 | 0.25 | 0.05 |
| 0.8Nb | 79.4 | 13.0 | 4.5 | 2.0 | 0.8 | 0.25 | 0.05 |
| 1.2Nb | 79.0 | 13.0 | 4.5 | 2.0 | 1.2 | 0.25 | 0.05 |
Fig. 1. SRIM predictions for 2.4 MeV Fe2+ irradiation of Fe-13Cr-4.5Al model alloy at a fluence of 1.45 × 1015 ions cm-2. The red horizontal line corresponds to the value of 100 appm/dpa below which the ion-irradiation induced Fe concentration can be ignored and is suitable for irradiation damage analysis.
Fig. 2. Bright-field images of unirradiated samples of (a) 0Nb, (b) 0.4Nb, (c) 0.8Nb, (d) 1.2Nb. The red arrow indicates the Laves phases in Nb-containing samples.
Fig. 3. Laves-Fe2Nb precipitates in the unirradiated region of the 1.2Nb sample: (a) BF-TEM image and Nano-beam electron diffraction of particle pointed by the red arrow, (b) HADDF image, and (c) EDS line scan compositional profiles across the particle drawn by a red line in (b).
| Property | Alloy | |||
|---|---|---|---|---|
| 0Nb | 0.4Nb | 0.8Nb | 1.2Nb | |
| Nb content (wt%) | 0 | 0.4 | 0.8 | 1.2 |
| ρdislocation (m - 2) | 3.7 ± 1.0 × 1013 | 5.2 ± 0.5 × 1013 | 6.4 ± 3.1 × 1013 | 7.1 ± 2.6 × 1013 |
| ρLaves phase (m - 3) | 0 | 2.33±0.66 × 1019 | 3.17±0.51 × 1019 | 4.42±0.47 × 1019 |
| dLaves phase (nm) | 0 | 145.95±63.48 | 169.82±65.67 | 156.49±49.96 |
| dgrain (μm) | 7.67±10.34 | 4.44±15.09 | 4.05±9.40 | 2.89±1.93 |
Table 2 Summary of average size/number density of identified features in unirradiated FeCrAl alloys.
| Property | Alloy | |||
|---|---|---|---|---|
| 0Nb | 0.4Nb | 0.8Nb | 1.2Nb | |
| Nb content (wt%) | 0 | 0.4 | 0.8 | 1.2 |
| ρdislocation (m - 2) | 3.7 ± 1.0 × 1013 | 5.2 ± 0.5 × 1013 | 6.4 ± 3.1 × 1013 | 7.1 ± 2.6 × 1013 |
| ρLaves phase (m - 3) | 0 | 2.33±0.66 × 1019 | 3.17±0.51 × 1019 | 4.42±0.47 × 1019 |
| dLaves phase (nm) | 0 | 145.95±63.48 | 169.82±65.67 | 156.49±49.96 |
| dgrain (μm) | 7.67±10.34 | 4.44±15.09 | 4.05±9.40 | 2.89±1.93 |
Fig. 4. Bright-field images of the dislocation loops in samples irradiated to 1 dpa at 400 °C with a) 0Nb g = 1-10 near the [110] zone axis, (b) 0.4Nb g = 1-10 near the [001] zone axis, (c) 0.8Nb g = 1-10 near the [110] zone axis, and (d)1.2Nb g = 1-10 near the [110] zone axis. The black arrow indicates the direction of g-vector.
Fig. 5. Bright-field images of the dislocation loops in samples irradiated to 15 dpa at 400 °C with (a) 0Nb g = 1-10 near the [001] zone axis, (b) 0.4Nb g = 1-10 near the [001] zone axis, (c) 0.8Nb g = 1-10 near the [110] zone axis, and (d)1.2Nb g = 1-10 near the [110] zone axis. The black arrow indicates the direction of g-vector.
Fig. 8. (a) Average sizes of dislocation loops as a function of Nb content at doses of 1 dpa and 15 dpa, and (b) volume number densities as a function of Nb content at doses of 1 dpa and 15 dpa. The data points were slightly shift along Nb content axis for comparison.
Fig. 9. (a) Volume number densities of a/2<111> and a<100> dislocation loops as a function of Nb content at doses of 1 dpa and 15 dpa, and (b) percentages of a<100> loops as a function of Nb content at doses of 1 dpa and 15 dpa.
Fig. 10. Bright-field images and nano-beam electron diffraction of particle pointed by the red arrow in 1.2Nb, (a) at dose of 1 dpa, (b) at dose of 15 dpa.
Fig. 11. Average hardness as a function of indentation depth for different Nb content FeCrAl alloys at (a) unirradiated, (b) 1 dpa, (c) 15 dpa, and (d) the value of H0 as a function of Nb content for before and after irradiation samples.
| Alloys | Dose (dpa) | H0 (GPa) | ΔH (GPa) |
|---|---|---|---|
| 0Nb | 0 | 2.91±0.36 | - |
| 1 | 3.96±0.48 | 1.05 | |
| 15 | 4.29±0.46 | 1.39 | |
| 0.4Nb | 0 | 2.98±0.34 | - |
| 1 | 3.22±0.27 | 0.25 | |
| 15 | 3.34±0.55 | 0.36 | |
| 0.8Nb | 0 | 3.05±0.29 | - |
| 1 | 3.50±0.23 | 0.45 | |
| 15 | 3.73±0.39 | 0.67 | |
| 1.2Nb | 0 | 3.37±0.34 | - |
| 1 | 3.52±0.59 | 0.15 | |
| 15 | 4.06±0.47 | 0.69 |
Table 3 Summary of H0 and ΔH based on the Nix-Gao model in the investigated FeCrAl alloys and irradiation doses.
| Alloys | Dose (dpa) | H0 (GPa) | ΔH (GPa) |
|---|---|---|---|
| 0Nb | 0 | 2.91±0.36 | - |
| 1 | 3.96±0.48 | 1.05 | |
| 15 | 4.29±0.46 | 1.39 | |
| 0.4Nb | 0 | 2.98±0.34 | - |
| 1 | 3.22±0.27 | 0.25 | |
| 15 | 3.34±0.55 | 0.36 | |
| 0.8Nb | 0 | 3.05±0.29 | - |
| 1 | 3.50±0.23 | 0.45 | |
| 15 | 3.73±0.39 | 0.67 | |
| 1.2Nb | 0 | 3.37±0.34 | - |
| 1 | 3.52±0.59 | 0.15 | |
| 15 | 4.06±0.47 | 0.69 |
| Alloys | Dose (dpa) | ΔHmeasured (GPa) | ΔHcalculated (GPa) | α |
|---|---|---|---|---|
| 0Nb | 0 | - | - | 0.54 |
| 1 | 1.05 | 1.05 | ||
| 15 | 1.39 | 1.25 | ||
| 0.4Nb | 0 | - | - | 0.13 |
| 1 | 0.25 | 0.26 | ||
| 15 | 0.36 | 0.29 | ||
| 0.8Nb | 0 | - | - | 0.22 |
| 1 | 0.45 | 0.44 | ||
| 15 | 0.67 | 0.56 | ||
| 1.2Nb | 0 | - | - | 0.30 |
| 1 | 0.15 | 0.64 | ||
| 15 | 0.69 | 0.69 |
Table 4 Summary of ΔH based on the Nix-Gao model and DBH model and α value in the investigated alloys and irradiation doses.
| Alloys | Dose (dpa) | ΔHmeasured (GPa) | ΔHcalculated (GPa) | α |
|---|---|---|---|---|
| 0Nb | 0 | - | - | 0.54 |
| 1 | 1.05 | 1.05 | ||
| 15 | 1.39 | 1.25 | ||
| 0.4Nb | 0 | - | - | 0.13 |
| 1 | 0.25 | 0.26 | ||
| 15 | 0.36 | 0.29 | ||
| 0.8Nb | 0 | - | - | 0.22 |
| 1 | 0.45 | 0.44 | ||
| 15 | 0.67 | 0.56 | ||
| 1.2Nb | 0 | - | - | 0.30 |
| 1 | 0.15 | 0.64 | ||
| 15 | 0.69 | 0.69 |
| [1] |
B.A Pint. K.A. Terrani, M.P. Brady, T. Cheng, J.R. Keiser, J. Nucl. Mater. 440 (2013) 420-427.
DOI URL |
| [2] |
J. Engkvist, S. Canovic, K. Hellström, A. Järdnäs, J.E. Svensson, L.G. Johansson, M. Olsson, M. Halvarsson, Oxid. Met. 73 (2010) 233-253.
DOI URL |
| [3] |
D. Pan, R. Zhang, H. Wang, C. Lu, Y. Liu, J. Alloys Compd. 684 (2016) 549-555.
DOI URL |
| [4] |
D. Pan, R. Zhang, H. Wang, Y. Xu, H. Wang, J. Mater. Eng. Perform. 27 (2018) 6407-6414.
DOI URL |
| [5] |
Y. Zhang, H. Wang, X. An, G. Chen, H. Sun, Y. Wang, J. Mater. Sci. 56 (2021) 8815-8834.
DOI URL |
| [6] | H. Wan, X. An, Q. Kong, X. Wu, W. Feng, H. Wang, J. Wu, C. Lu, W. Zha, H. Sun, L. Huang, Adv. Powder Technol. (2021) 0-9. |
| [7] |
H. Sun, H. Wang, X. He, F. Wang, X. An, Z. Wang, Mater. Sci. Eng. A 802 (2021) 140688.
DOI URL |
| [8] |
N.M. George, K. Terrani, J. Powers, A. Worrall, I. Maldonado, Ann. Nucl. Energy 75 (2015) 703-712.
DOI URL |
| [9] |
Y. Yamamoto, B.A. Pint, K.A. Terrani, K.G. Field, Y. Yang, L.L. Snead, J. Nucl. Mater. 467 (2015) 703-716.
DOI URL |
| [10] |
Z. Sun, H. Bei, Y. Yamamoto, Mater. Charact. 132 (2017) 126-131.
DOI URL |
| [11] |
Z. Sun, Y. Yamamoto, Mater. Sci. Eng. A 700 (2017) 554-561.
DOI URL |
| [12] |
X. Huang, H. Wang, S. Qiu, Y. Zhang, K. He, B. Wu, J. Mater. Process. Technol. 277 (2019) 116434.
DOI URL |
| [13] | J. Zheng, Y. Jia, P. Du, H. Wang, Q. Pan, Y. Zhang, C. Liu, R. Zhang, S. Qiu, Mate-rials (Basel) 12 (2019) 2939. |
| [14] |
H. Wang, Y.X. Gao, M. Sun, H.Y. Yang, G. Li, K. He, X.P. Wang, W.B. Jiang, Q.F. Fang, J. Nucl. Mater. 542 (2020) 152461.
DOI URL |
| [15] | K.G. Field, X. Hu, K. Littrell, Y. Yamamoto, R.H. Howard, L.L. Snead, Stability of Model Fe-Cr-Al Alloys Under The Presence of Neutron Radiation, Oak Ridge, TN (United States), 2014. |
| [16] |
K.G. Field, X. Hu, K.C. Littrell, Y. Yamamoto, L.L. Snead, J. Nucl. Mater. 465 (2015) 746-755.
DOI URL |
| [17] |
K.G. Field, S.A. Briggs, K. Sridharan, R.H. Howard, Y. Yamamoto, J. Nucl. Mater. 489 (2017) 118-128.
DOI URL |
| [18] |
E. Aydogan, J.S. Weaver, S.A. Maloy, O. El-Atwani, Y.Q. Wang, N.A. Mara, J. Nucl. Mater. 503 (2018) 250-262.
DOI URL |
| [19] |
K.G. Field, S.A. Briggs, K. Sridharan, Y. Yamamoto, R.H. Howard, J. Nucl. Mater. 495 (2017) 20-26.
DOI URL |
| [20] |
K.G. Field, S.A. Briggs, X. Hu, Y. Yamamoto, R.H. Howard, K. Sridharan, J. Nucl. Mater. 483 (2017) 54-61.
DOI URL |
| [21] |
J.C. Haley, S.A. Briggs, P.D. Edmondson, K. Sridharan, S.G. Roberts, S. Lozano-Perez, K.G. Field, Acta Mater 136 (2017) 390-401.
DOI URL |
| [22] |
D. Zhang, S.A. Briggs, K.G. Field, J. Nucl. Mater. 505 (2018) 165-173.
DOI URL |
| [23] |
M. Hernandez-Mayoral, Z. Yao, M.L. Jenkins, M.A. Kirk, Philos. Mag. 88 (2008) 2881-2897.
DOI URL |
| [24] | X. Zhou, L. Guo, Y. Wei, H. Wang, C. Chen, Y. Chen, W. Zhang, S. Liu, R. Liu, S. Mo, Nucl. Mater. Energy 21 (2019) 100718. |
| [25] |
P.D. Edmondson, S.A. Briggs, Y. Yamamoto, R.H. Howard, K. Sridharan, K.A. Ter-rani, K.G. Field, Scr. Mater. 116 (2016) 112-116.
DOI URL |
| [26] |
L. He, L. Tan, Y. Yang, K. Sridharan, J. Nucl. Mater. 525 (2019) 102-110.
DOI URL |
| [27] | D.B. Williams, C.B. Carter, Trans. Electron Micros. (2009). |
| [28] |
B. Yao, D.J. Edwards, R.J. Kurtz, J. Nucl. Mater. 434 (2013) 402-410.
DOI URL |
| [29] |
W. Zhang, L. Song, T. Zhu, Y. Xiong, H. Ma, Q. Yan, X. Cao, B. Wang, S. Jin, J. Nucl. Mater. 548 (2021) 152862.
DOI URL |
| [30] |
M. Hernández-Mayoral, C. Heintze, E. Oñorbe, J. Nucl. Mater. 474 (2016) 88-98.
DOI URL |
| [31] |
C.D. Hardie, S.G. Roberts, A.J. Bushby, J. Nucl. Mater. 462 (2015) 391-401.
DOI URL |
| [32] |
R. Kasada, Y. Takayama, K. Yabuuchi, A. Kimura, Fusion Eng. Des. 86 (2011) 2658-2661.
DOI URL |
| [33] |
G.M. Pharr, E.G. Herbert, Y. Gao, Annu. Rev. Mater. Res. 40 (2010) 271-292.
DOI URL |
| [34] |
W.D. Nix, H. Gao, J. Mech. Phys. Solids 46 (1998) 411-425.
DOI URL |
| [35] |
M.R. Gilbert, S.L. Dudarev, P.M. Derlet, D.G. Pettifor, J. Phys. Condens. Matter 20 (2008) 345214.
DOI URL |
| [36] |
K. Arakawa, K. Ono, M. Isshiki, K. Mimura, M. Uchikoshi, H. Mori, Science 318 (2007) 956-959.
PMID |
| [37] |
I.M. Robertson, W.E. King, M.A. Kirk, Scr. Metall. 18 (1984) 317-320.
DOI URL |
| [38] | T.P.C. Klaver, P. Olsson, M.W. Finnis, Phys. Rev. B - Condens. Matter Mater. Phys. 76 (2007) 1-12. |
| [39] |
Z. Yao, M. Hernández-Mayoral, M.L. Jenkins, M.A. Kirk, Philos. Mag. 88 (2008) 2851-2880.
DOI URL |
| [40] |
K. Ono, K. Arakawa, H. Shibasaki, H. Kurata, I. Nakamichi, N. Yoshida, J. Nucl. Mater. 329-333 (2004) 933-937.
DOI URL |
| [41] |
N. Yoshida, A. Yamaguchi, T. Muroga, Y. Miyamoto, K. Kitajima, J. Nucl. Mater. 155-157 (1988) 1232-1236.
DOI URL |
| [42] |
J.C. Haley, S.A. Briggs, P.D. Edmondson, K. Sridharan, S.G. Roberts, S. Lozano-Perez, K.G. Field, Acta Mater 136 (2017) 390-401.
DOI URL |
| [43] |
G.A. Cottrell, S.L. Dudarev, R.A. Forrest, J. Nucl. Mater. 325 (2004) 195-201.
DOI URL |
| [44] |
H. Xu, R.E. Stoller, Y.N. Osetsky, D. Terentyev, Phys. Rev. Lett. 110 (2013) 265503.
DOI URL |
| [45] |
K. Arakawa, T. Amino, H. Mori, Acta Mater 59 (2011) 141-145.
DOI URL |
| [46] |
T. Muroga, N. Yoshida, K. Kitajima, Ultramicroscopy 22 (1987) 281-287.
DOI URL |
| [47] |
F. Wang, X. Yan, T. Wang, Y. Wu, L. Shao, M. Nastasi, Y. Lu, B. Cui, Acta Mater 195 (2020) 739-749.
DOI URL |
| [48] |
E.R. Reese, N. Almirall, T. Yamamoto, S. Tumey, G.Robert Odette, E.A. Marquis, Scr. Mater. 146 (2018) 213-217.
DOI URL |
| [49] |
J.H. Ke, E.R. Reese, E.A. Marquis, G.R. Odette, D. Morgan, Acta Mater 164 (2019) 586-601.
DOI URL |
| [50] |
B.N. Singh, A.J.E. Foreman, H. Trinkaus, J. Nucl. Mater. 249 (1997) 103-115.
DOI URL |
| [51] |
G.E. Lucas, J. Nucl. Mater. 206 (1993) 287-305.
DOI URL |
| [52] |
R.E. Stoller, S.J. Zinkle, J. Nucl. Mater. 283-287 (2000) 349-352.
DOI URL |
| [53] |
P. Zhang, S.X. Li, Z.F. Zhang, Mater. Sci. Eng. A 529 (2011) 62-73.
DOI URL |
| [1] | Meng Sun, Anatoly Balagurov, Ivan Bobrikov, Xianping Wang, Wen Wen, Igor S. Golovin, Qianfeng Fang. High damping in Fe-Ga-La alloys: Phenomenological model for magneto-mechanical hysteresis damping and experiment [J]. J. Mater. Sci. Technol., 2021, 72(0): 69-80. |
| [2] | Ye Liang, Wei Yan, Xianbo Shi, Yanfen Li, Quanqiang Shi, Wei Wang, Yiyin Shan, Ke Yang. On Laves phase in a 9Cr3W3CoB martensitic heat resistant steel when aged at high temperatures [J]. J. Mater. Sci. Technol., 2021, 85(0): 129-140. |
| [3] | Sajian Wu, Jing Li, Changji Li, Yiyi Li, Liangyin Xiong, Shi Liu. Preliminary study on the fabrication of 14Cr-ODS FeCrAl alloy by powder forging [J]. J. Mater. Sci. Technol., 2021, 83(0): 49-57. |
| [4] | Yong Liu, Xinqing Han, Qing Huang, Miguel L. Crespillo, Peng Liu, Eva Zarkadoula, Xuelin Wang. Structural damage response of lanthanum and yttrium aluminate crystals to nuclear collisions and electronic excitation: Threshold assessment of irradiation damage [J]. J. Mater. Sci. Technol., 2021, 90(0): 95-107. |
| [5] | J. Li, C. Xu, G. Zheng, W.J. Dai, C.C. Bu, G. Chen. On the microstructural origin of premature failure of creep strength enhanced martensitic steels [J]. J. Mater. Sci. Technol., 2021, 87(0): 269-279. |
| [6] | Lifeng Zhang, Shangyi Ma, Weizhen Wang, Zhiqing Yang, Hengqiang Ye. Atomic structure and enhanced thermostability of a new structure MgYZn4 formed by ordered substitution of Y for Mg in MgZn2 in a Mg-Zn-Y alloy [J]. J. Mater. Sci. Technol., 2019, 35(9): 2058-2063. |
| [7] | Jinlong Du, Yuan Huang, Chan Xiao, Yongchang Liu. Building metallurgical bonding interfaces in an immiscible Mo/Cu system by irradiation damage alloying (IDA) [J]. J. Mater. Sci. Technol., 2018, 34(4): 689-694. |
| [8] | Gang Qin, Shu Wang, Ruirun Chen, Xue Gong, Liang Wang, Yanqing Su, Jingjie Guo, Hengzhi Fu. Microstructures and mechanical properties of Nb-alloyed CoCrCuFeNi high-entropy alloys [J]. J. Mater. Sci. Technol., 2018, 34(2): 365-369. |
| [9] | Shuoxue Jin, Liping Guo, Yaoyao Ren, Rui Tang, Yanxin Qiao. TEM Characterization of Self-ion Irradiation Damage in Nickel-base Alloy C-276 at Elevated Temperature [J]. J. Mater. Sci. Technol., 2012, 28(11): 1039-1045. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
