J. Mater. Sci. Technol. ›› 2021, Vol. 90: 30-36.DOI: 10.1016/j.jmst.2021.02.032
• Research Article • Previous Articles Next Articles
					
													Shangcheng Zhou, Yao-Jian Liang*( ), Yichao Zhu, Benpeng Wang, Lu Wang, Yunfei Xue
), Yichao Zhu, Benpeng Wang, Lu Wang, Yunfei Xue
												  
						
						
						
					
				
Received:2020-12-06
															
							
																	Revised:2021-01-29
															
							
																	Accepted:2021-02-02
															
							
																	Published:2021-11-05
															
							
																	Online:2021-11-05
															
						Contact:
								Yao-Jian Liang   
													About author:* E-mail address: liangyj@bit.edu.cn (Y.-J. Liang).Shangcheng Zhou, Yao-Jian Liang, Yichao Zhu, Benpeng Wang, Lu Wang, Yunfei Xue. Ultrashort-time liquid phase sintering of high-performance fine-grain tungsten heavy alloys by laser additive manufacturing[J]. J. Mater. Sci. Technol., 2021, 90: 30-36.
 
																													Fig. 3. SEM-BSE images of the microstructure at the uppermost position of the LULPS W-HEA prepared under different processing parameters of P (1200 W, 1500 W and 1800 W) and V (5 mm/s, 10 mm/s and 20 mm/s). The insets in (a) and (b) show the enlarged images of W phase in corresponding figure.
 
																													Fig. 4. SEM images of microstructure of the LULPS W-HEA (a) and the LPS W-HEA (c); (b) and (d) is the enlarged microstructural images and corresponding EBSD inverse pole figure of the LULPS W-HEA; (e) is the TEM figure and corresponding SAED pattern of the LULPS W-HEA, which shows the same pattern to that in the LPS W-HEA.
 
																													Fig. 5. Mechanical properties of the LULPS and LPS W-HEA: (a) Quasi-static tensile curves of the LULPS W-HEA and the LPS W-HEA; (b) Strength comparison of LPS WHAs (W-NiFe [1,2,7,10,34,[38], [39], [40]], W-NiFeCo [7,[41], [42], [43], [44], [45]], W-NiFeRe [7], W-NiFeCoMo [46] and W-NiFeY [47]) and the LULPS W-HEA; (c) Dynamic compression curves of the LULPS W-HEA and the LPS W-HEA at ~4 × 103 s - 1; (d) Shear localization in the LULPS W-HEA (d-1) and homogeneous compression in the LPS W-HEA (d-2).
 
																													Fig. 6. Pores and W morphologies in the LULPS W-HEA: (a) Effects of P and V on pores; (b) Effects of temperature on liquid content and W morphologies in the schematic W-HEA diagram; Effects of (c) scanning tracks and (d) layers on the distribution of pores; Poor surface fusion forms residual pores; Schematic figure of (e) pores formation between layers, and (f) pores distribution, where the redder position refers to a higher temperature.
| [1] | X. Gong, J.L. Fan, F. Ding, M. Song, B.Y. Huang, Int. J. Refract. Met. Hard Mater. 30 (2012) 71-77. DOI URL | 
| [2] | R.M. German, A. Bose, S.S. Mani, Metall. Trans. A 23 (1992) 211-219. DOI URL | 
| [3] | R.M. German, P. Suri, S.J. Park, J. Mater. Sci. 44 (2008) 1-39. DOI URL | 
| [4] | S.H. Islam, X. Qu, X. He, Powder Metall 50 (2013) 11-13. DOI URL | 
| [5] | D.K. Kim, S. Lee, J.W. Noh, Mater. Sci. Eng. A 247 (1-2) (1998) 285-294. DOI URL | 
| [6] | N.K. Çalı ¸s kan, N. Durlu, S¸. Bor , Int. J. Refract. Met. Hard Mater. 36 (2013) 260-264. DOI URL | 
| [7] | U. Ravi Kiran, A. Panchal, M. Sankaranarayana, G.V.S.N. Rao, T.K. Nandy, Mater. Sci. Eng. A 640 (2015) 82-90. DOI URL | 
| [8] | H. Couque, G. Nicolas, C. Altmayer, Int. J. Impact Eng. 34 (2007) 412-423. DOI URL | 
| [9] | X. Gong, J.L. Fan, B.Y. Huang, J.M. Tian, Mater. Sci. Eng. A 527 (2010) 7565-7570. DOI URL | 
| [10] | R. Luo, D. Huang, M. Yang, E. Tang, M. Wang, L. He, Mater. Sci. Eng. A 675 (2016) 262-270. DOI URL | 
| [11] | J.L. Fan, X. Gong, B.Y. Huang, M. Song, T. Liu, M.G. Qi, J.M. Tian, S.K. Li, Mech. Mater. 42 (2010) 24-30. DOI URL | 
| [12] | R. Schmidberger, S. Hardtle, US, 1987. | 
| [13] | D.P. Xiang, L. Ding, Y.Y. Li, G.B. Chen, Y.W. Zhao, J. Alloys Compd. 562 (2013) 19-24. DOI URL | 
| [14] | Y. Li, K. Hu, X. Li, X. Ai, S. Qu, Mater. Sci. Eng. A 573 (2013) 245-252. DOI URL | 
| [15] | A. Upadhyaya, S.K. Tiwari, P. Mishra, Scr. Mater. 56 (2007) 5-8. DOI URL | 
| [16] | S.H. Hong, H.J. Ryu, Mater. Sci. Eng. A 344 (2003) 253-260. DOI URL | 
| [17] | K.H. Lee, S.I. Cha, H.J. Ryu, S.H. Hong, Mater. Sci. Eng. A 458 (2007) 323-329. DOI URL | 
| [18] | N. Senthilnathan, A.R. Annamalai, G. Venkatachalam, Mater. Sci. Eng. A 710 (2018) 66-73. DOI URL | 
| [19] | Z.Y. Hu, Z.H. Zhang, X.W. Cheng, F.C. Wang, Y.F. Zhang, S.L. Li, Mater. Des. 191 (2020) 108662. DOI URL | 
| [20] | D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann, Acta Mater 117 (2016) 371-392. DOI URL | 
| [21] | H. Fayazfar, M. Salarian, A. Rogalsky, D. Sarker, P. Russo, V. Paserin, E. Toy- serkani, Mater.Des. 144 (2018) 98-128. DOI URL | 
| [22] | Y. Zhu, D. Liu, X. Tian, H. Tang, H. Wang, Mater. Des. 56 (2014) 445-453. DOI URL | 
| [23] | H.J. Niu, I.T.H. Chang, J Mater. Sci. 35 (2000) 31-38. DOI URL | 
| [24] | M. Agarwala, Rapid Prototyping J. 1 (1995) 26-36. DOI URL | 
| [25] | A. Simchi, H. Pohl, Mater. Sci. Eng. A 359 (2003) 119-128. DOI URL | 
| [26] | S. Zhou, Y.-.J. Liang, Y. Zhu, R. Jian, B. Wang, Y. Xue, L. Wang, F. Wang, J. Alloys Compd. 777 (2019) 1184-1190. DOI URL | 
| [27] | K. Maeda, T.H.C. Childs, J. Mater. Process. Technol. 149 (2004) 609-615. DOI URL | 
| [28] | Y.J. Liang, L. Wang, Y. Wen, B. Cheng, Q. Wu, T. Cao, Q. Xiao, Y. Xue, G. Sha, Y. Wang, Y. Ren, X. Li, L. Wang, F. Wang, H. Cai, Nat. Commun. 9 (2018) 4063. DOI URL | 
| [29] | P. Kruth, Rapid Prototyping J 11 (2005) 26-36. DOI URL | 
| [30] | S. Zhou, L. Wang, Y.J. Liang, Y. Zhu, R. Jian, B. Wang, L. Wang, Y. Xue, F. Wang, H. Cai, Y. Ren, Mater. Des. 190 (2020) 108554. DOI URL | 
| [31] | R. Jian, L. Wang, S. Zhou, Y. Zhu, Y.J. Liang, B. Wang, Y. Xue, Mater. Lett. 278 (2020) 128405. DOI URL | 
| [32] | X. Gong, J.L. Fan, F. Ding, M. Song, B.Y. Huang, J.M. Tian, Mater. Sci. Eng. A 528 (2011) 3646-3652. DOI URL | 
| [33] | V.N. Chuvil’deev, A.V. Nokhrin, M.S. Boldin, G.V. Baranov, N.V. Sakharov, V. Y. Belov, E.A. Lantsev, A.A. Popov, N.V. Melekhin, Y.G. Lopatin, Y.V. Blagoveshchenskiy, N.V. Isaeva, J. Alloys Compd. 773 (2019) 666-688. DOI URL | 
| [34] | A. Bose, R.M. German, Metall. Trans. A 19 (1988) 2467-2476. DOI URL | 
| [35] | H. Danninger, A. Atari, B. Lux, E. Kny, G. Friedbacher, M.J.M.A. Grasserbauer, Microchim. Acta 108 (1992) 163-172. DOI URL | 
| [36] | H. Danninger, A. Atari, B. Lux, E. Kny, A. Tschulik, Fresenius’ Zeitschrift für An- alyt. Chem. 333 (1989) 417-421. | 
| [37] | E. Fortuna, K. Sikorski, K.J. Kurzydlowski, Mater. Charact. 52 (2004) 323-329. DOI URL | 
| [38] | R.M. German, K.S. Churn, Metall. Trans. A 15 (1984) 747-754. DOI URL | 
| [39] | N. Durlu, N.K. Çali ¸s kan, ¸S. Bor, Int. J. Refract. Met. Hard Mater. 42 (2014) 126-131. DOI URL | 
| [40] | Y. Yu, W. Zhang, E. Wang, J. Alloys Compd. 622 (2015) 880-884. DOI URL | 
| [41] | A. Kumari, G. Prabhu, M. Sankaranarayana, T.K. Nandy, Mater. Sci. Eng. A 688 (2017) 225-236. DOI URL | 
| [42] | U. Ravi Kiran, A. Sambasiva Rao, M. Sankaranarayana, T.K. Nandy, Int. J. Refract. Met. Hard Mater. 33 (2012) 113-121. DOI URL | 
| [43] | U. Ravi Kiran, S. Kumar Khaple, M. Sankaranarayana, G.V.S. Nageswara Rao, T.K. Nandy, Mater. Today: Proc 5 (2018) 3914-3918. | 
| [44] | Y. Yu, W. Zhang, Y. Chen, E. Wang, Int. J. Refract. Met. Hard Mater. 44 (2014) 103-108. DOI URL | 
| [45] | R. Kocich, L. Kunˇ cická, D. Dohnalík, A. Macháˇcková, M. Šofer, Int. J. Refract. Met. Hard Mater. 61 (2016) 264-272. DOI URL | 
| [46] | U.R. Kiran, J. Kumar, V. Kumar, M. Sankaranarayana, G.V.S. Nageswara Rao, T.K. Nandy, Mater. Sci. Eng. A 656 (2016) 256-265. DOI URL | 
| [47] | X. Gong, J.L. Fan, F. Ding, M. Song, B.Y. Huang, J.M. Tian, Mater. Sci. Eng. A 528 (2011) 3646-3652. DOI URL | 
| [48] | R.D. Li, J.H. Liu, Y.S. Shi, L. Zhang, M.Z. Du, Powder Metall 53 (2013) 310-317. DOI URL | 
| [49] | D. Zhang, Q. Cai, J. Liu, R. Li, J. Mater. Eng. Perform. 20 (2010) 1049-1054. DOI URL | 
| [50] | D.Q. Zhang, Z.H. Liu, Q.Z. Cai, J.H. Liu, C.K. Chua, Int. J. Refract. Met. Hard Mater. 45 (2014) 15-22. DOI URL | 
| [51] | D. Gu, Y. Shen, J. Alloys Compd. 473 (2009) 107-115. DOI URL | 
| [52] | M. Wang, R. Li, T. Yuan, C. Chen, M. Zhang, Q. Weng, J. Yuan, Int. J. Refract. Met. Hard Mater. 70 (2018) 9-18. DOI URL | 
| [53] | K.S. Churn, R.M. German, Metall. Trans. A 15 (1984) 331-338. DOI URL | 
| [54] | K. Hu, X. Li, M. Guan, S. Qu, X. Yang, J. Zhang, Int. J. Refract. Met. Hard Mater. 58 (2016) 117-124. DOI URL | 
| [55] | L. Peng, S. Li, X. Zhou, H. Cai, Rare Met. Mater. Eng. 39 (2010) 2084-2087. DOI URL | 
| [56] | K. Hu, X. Li, B. Liu, M. Guan, S. Qu, S. Han, Mater. Sci. Eng. A 729 (2018) 349-356. DOI URL | 
| [57] | D.K. Kim, S. Lee, W. Hyung Baek, Mater. Sci. Eng. A 249 (1998) 197-205. DOI URL | 
| [58] | Y. Ma, J. Zhang, W. Liu, P. Yue, B. Huang, Int. J. Refract. Met. Hard Mater. 42 (2014) 71-76. DOI URL | 
| [59] | Q. Wei, T. Jiao, K.T. Ramesh, E. Ma, L.J. Kecskes, L. Magness, R. Dowding, V. U. Kazykhanov, R.Z. Valiev, Acta Mater 54 (2006) 77-87. | 
| [60] | B. Dodd, Y. Bai, Elsevier, 2012. | 
| [61] | H.H. Zhu, L. Lu, J.Y.H. Fuh, Mater. Sci. Eng. A 371 (1) (2004) 170-177. DOI URL | 
| [62] | N. Eustathopoulos, M.G. Nicholas, B. Drevet, Pergamon, 1999. | 
| [63] | H. Chen, D. Gu, K. Kosiba, T. Lu, L. Deng, L. Xi, U. Kühn, Addit. Manuf. 35 (2020) 101195. | 
| [64] | D. Dai, D. Gu, Int. J. Mach. Tools Manuf. 100 (2016) 14-24. DOI URL | 
| [65] | Y.J. Liang, X. Cheng, H.M. Wang, Acta Mater 118 (2016) 17-27. DOI URL | 
| [66] | Y.J. Liang, A. Li, X. Cheng, X.T. Pang, H.M. Wang, J. Alloys Compd. 688 (2016) 133-142. DOI URL | 
| [67] | Y.J. Liang, J. Li, A. Li, X. Cheng, S. Wang, H.M. Wang, J. Alloys Compd. 697 (2017) 174-181. DOI URL | 
| [68] | Y.J. Liang, H.M. Wang, Mater. Des. 102 (2016) 297-302. DOI URL | 
| [69] | Y.J. Liang, J. Li, A. Li, X.T. Pang, H.M. Wang, Scr. Mater. 127 (2017) 58-62. DOI URL | 
| [70] | Y.J. Liang, H.M. Wang, Mater. Sci. Eng. A 622 (2015) 16-20. DOI URL | 
| [71] | Y.J. Liang, X. Cheng, J. Li, H.M. Wang, Mater. Des. 130 (2017) 197-207. DOI URL | 
| [1] | Hui Xiao, Manping Cheng, Lijun Song. Direct fabrication of single-crystal-like structure using quasi-continuous-wave laser additive manufacturing [J]. J. Mater. Sci. Technol., 2021, 60(0): 216-221. | 
| [2] | Hongyu Chen, Dongdong Gu, Liang Deng, Tiwen Lu, Uta Kühn, Konrad Kosiba. Laser additive manufactured high-performance Fe-based composites with unique strengthening structure [J]. J. Mater. Sci. Technol., 2021, 89(0): 242-252. | 
| [3] | Y.M. Ren, X. Lin, H.O. Yang, H. Tan, J. Chen, Z.Y. Jian, J.Q. Li, W.D. Huang. Microstructural features of Ti-6Al-4V manufactured via high power laser directed energy deposition under low-cycle fatigue [J]. J. Mater. Sci. Technol., 2021, 83(0): 18-33. | 
| [4] | Yafei Wang, Rui Chen, Xu Cheng, Yanyan Zhu, Jikui Zhang, Huaming Wang. Effects of microstructure on fatigue crack propagation behavior in a bi-modal TC11 titanium alloy fabricated via laser additive manufacturing [J]. J. Mater. Sci. Technol., 2019, 35(2): 403-408. | 
| [5] | Ronghua LI, Jihua HUANG, Sheng YIN, Jun ZHAO. Aging Behaviors of W-Ni-Fe Ternary Alloys with High Ni-to-Fe Ratios [J]. J Mater Sci Technol, 2003, 19(06): 631-633. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||
 WeChat
			   WeChat
			