J. Mater. Sci. Technol. ›› 2021, Vol. 88: 36-44.DOI: 10.1016/j.jmst.2021.01.064
Previous Articles Next Articles
Weiqiang Hua, Tao Sunb, Chenxi Liua, Liming Yua, Tansir Ahamadc, Zongqing Maa,*()
Received:
2020-12-25
Revised:
2021-01-21
Accepted:
2021-01-23
Published:
2021-03-18
Online:
2021-03-18
Contact:
Zongqing Ma
About author:
*E-mail address: mzq0320@163.com (Z. Ma).Weiqiang Hu, Tao Sun, Chenxi Liu, Liming Yu, Tansir Ahamad, Zongqing Ma. Refined microstructure and enhanced mechanical properties in Mo-Y2O3 alloys prepared by freeze-drying method and subsequent low temperature sintering[J]. J. Mater. Sci. Technol., 2021, 88: 36-44.
Alloy composition | Preparation process | Powder grain size | Alloy grain size | Relative density | Second phase size | Vickers hardness | Year + Reference |
---|---|---|---|---|---|---|---|
Mo- 1 wt%Y2O3 | Freeze-drying + PSH, 1600 ℃ | 85 nm | 620 nm | 99.6 % | <50 nm | 487 ± 28 HV0.2 | In this work |
few 100 nm | |||||||
Mo- 1 wt%Y2O3 | MA + PSH, 1600 ℃ | 26.5 nm (XRD) | 2.17 μm | 97.5 % | 253 nm | 382 ± 39 HV0.2 | In this work |
Mo-ZrO2 (0-1.5 wt%) | Hydrothermal + PSH, 2000 ℃ | - | 10-30 μm | 94 % | 200 nm | 210-240 HV | 2017+ [ |
Mo-ZrO2 (0-1.5 wt%) | Hydrothermal + PSH, 1800 ℃ | <3 μm | 50 μm | 97 % | <500 nm | 168-236 HV | 2016+ [ |
286-348 HV (after rolling) | |||||||
Mo-Al2O3 (0-40 vol.%) | Hydrothermal + PSH, 1900 ℃ | 2.1 μm | 10 μm | 95 %- | 3-6 μm | 384 HV | 2016+ [ |
97.5 % | |||||||
Mo-ZrO2 (0-1.5 wt%) | Hydrothermal + sintering + Rolling + Annealing, 1400 ℃ | - | 20-60 μm | 95 % | 200 nm | 300-350 HV | 2018+ [ |
Mo-La2O3 (0.3 wt%-2.5 wt%) | MA+HIP, 1800-1900℃ | 1-10 μm | 3-20 μm | 97.4 %-98.7 % | 100-700nm | - | 2018+ [ |
Mo/ZrO2-Y2O3 (0-5 vol.%) | MA/Chemical + PSH, 1920 ℃+Swaging (800/1200℃) | 1-5 μm | <10 μm | 94 %-98 % | <100 nm | 175-325 HV | 2018+ [ |
Mo-4 wt%La2O3 | Sol-gel + PSH, 1300-1700℃ | 30-40 nm | - | 98.3 %-98.8 % | <400 nm | - | 2005+ [ |
Mo-La2O3 | powder metallurgy + Rolling, 1150-1850 ℃ | - | >50 μm | - | 500 nm | 258-517 MPa | 2011+ [ |
Mo-0.15 %Y -0.15 %Ce | S-L doping +PSH,1900℃ | 10 μm | 20∼500 μm | - | Y2O3 | - | 2013+ [ |
>100 nm | |||||||
CeO2 | |||||||
50-200 nm | |||||||
Mo-0.8 %La2O3-2%ZrC | MA + PSH,1950 ℃+ Rolling | - | 10 μm 1.65 μm (after rolling) | 95 % | 3 μm | 326 HV | 2019+ [ |
Mo-ZrO2 (0 wt%-1.5 wt%) | Hydrothermal + PSH + Rolling | - | 10 μm | - | 100 nm | - | 2018+ [ |
Mo-La2O3 (0.26 wt%-0.28 wt%) | S-S doping +PSH, 1850℃+Annealing, 1100 ℃ | - | 6.8 μm | - | 93 nm (at Mo interior)/0.23 μm (at Mo GBs) | - | 2017+ [ |
29 μm | |||||||
Mo-La2O3 (0.26 wt%-0.28 wt%) | S-L doping +PSH,1850℃+Annealing, 1100 ℃ | - | 2.7 μm 38 μm | - | 65 nm (at Mo interior)/ 0.18 μm (at Mo GBs) | - | 2017+ [ |
Mo-La2O3 (0-2 wt%) | MA + PSH, 1900 ℃+ Rolling | - | 15-35 μm | 94.5 %-95.7 %/ 98.6 %-99.4 % (after rolling) | <50 nm (at Mo interior)/ <100 nm (at Mo GBs) | - | 2015+ [ |
Mo-30 wt%Y2O3 | Sol-gel + SPS, 1500 ℃ | - | 3 μm | - | - | - | 2010+ [ |
Mo-La2O3 | Chemical +HIP, | - | 5 μm | - | 3 μm | - | 2006+ [ |
-Y2O3 | 1800 ℃ | ||||||
Mo-La2O3-Y2O3 | Sol-gel + SPS, 1500 ℃ | - | 5 μm | - | 3 μm | - | 2010+ [ |
Table 1 The Mo grain size of powder and alloy, relative density, second phase size and Vickers hardness about ODS Mo alloys in our work and available literatures.
Alloy composition | Preparation process | Powder grain size | Alloy grain size | Relative density | Second phase size | Vickers hardness | Year + Reference |
---|---|---|---|---|---|---|---|
Mo- 1 wt%Y2O3 | Freeze-drying + PSH, 1600 ℃ | 85 nm | 620 nm | 99.6 % | <50 nm | 487 ± 28 HV0.2 | In this work |
few 100 nm | |||||||
Mo- 1 wt%Y2O3 | MA + PSH, 1600 ℃ | 26.5 nm (XRD) | 2.17 μm | 97.5 % | 253 nm | 382 ± 39 HV0.2 | In this work |
Mo-ZrO2 (0-1.5 wt%) | Hydrothermal + PSH, 2000 ℃ | - | 10-30 μm | 94 % | 200 nm | 210-240 HV | 2017+ [ |
Mo-ZrO2 (0-1.5 wt%) | Hydrothermal + PSH, 1800 ℃ | <3 μm | 50 μm | 97 % | <500 nm | 168-236 HV | 2016+ [ |
286-348 HV (after rolling) | |||||||
Mo-Al2O3 (0-40 vol.%) | Hydrothermal + PSH, 1900 ℃ | 2.1 μm | 10 μm | 95 %- | 3-6 μm | 384 HV | 2016+ [ |
97.5 % | |||||||
Mo-ZrO2 (0-1.5 wt%) | Hydrothermal + sintering + Rolling + Annealing, 1400 ℃ | - | 20-60 μm | 95 % | 200 nm | 300-350 HV | 2018+ [ |
Mo-La2O3 (0.3 wt%-2.5 wt%) | MA+HIP, 1800-1900℃ | 1-10 μm | 3-20 μm | 97.4 %-98.7 % | 100-700nm | - | 2018+ [ |
Mo/ZrO2-Y2O3 (0-5 vol.%) | MA/Chemical + PSH, 1920 ℃+Swaging (800/1200℃) | 1-5 μm | <10 μm | 94 %-98 % | <100 nm | 175-325 HV | 2018+ [ |
Mo-4 wt%La2O3 | Sol-gel + PSH, 1300-1700℃ | 30-40 nm | - | 98.3 %-98.8 % | <400 nm | - | 2005+ [ |
Mo-La2O3 | powder metallurgy + Rolling, 1150-1850 ℃ | - | >50 μm | - | 500 nm | 258-517 MPa | 2011+ [ |
Mo-0.15 %Y -0.15 %Ce | S-L doping +PSH,1900℃ | 10 μm | 20∼500 μm | - | Y2O3 | - | 2013+ [ |
>100 nm | |||||||
CeO2 | |||||||
50-200 nm | |||||||
Mo-0.8 %La2O3-2%ZrC | MA + PSH,1950 ℃+ Rolling | - | 10 μm 1.65 μm (after rolling) | 95 % | 3 μm | 326 HV | 2019+ [ |
Mo-ZrO2 (0 wt%-1.5 wt%) | Hydrothermal + PSH + Rolling | - | 10 μm | - | 100 nm | - | 2018+ [ |
Mo-La2O3 (0.26 wt%-0.28 wt%) | S-S doping +PSH, 1850℃+Annealing, 1100 ℃ | - | 6.8 μm | - | 93 nm (at Mo interior)/0.23 μm (at Mo GBs) | - | 2017+ [ |
29 μm | |||||||
Mo-La2O3 (0.26 wt%-0.28 wt%) | S-L doping +PSH,1850℃+Annealing, 1100 ℃ | - | 2.7 μm 38 μm | - | 65 nm (at Mo interior)/ 0.18 μm (at Mo GBs) | - | 2017+ [ |
Mo-La2O3 (0-2 wt%) | MA + PSH, 1900 ℃+ Rolling | - | 15-35 μm | 94.5 %-95.7 %/ 98.6 %-99.4 % (after rolling) | <50 nm (at Mo interior)/ <100 nm (at Mo GBs) | - | 2015+ [ |
Mo-30 wt%Y2O3 | Sol-gel + SPS, 1500 ℃ | - | 3 μm | - | - | - | 2010+ [ |
Mo-La2O3 | Chemical +HIP, | - | 5 μm | - | 3 μm | - | 2006+ [ |
-Y2O3 | 1800 ℃ | ||||||
Mo-La2O3-Y2O3 | Sol-gel + SPS, 1500 ℃ | - | 5 μm | - | 3 μm | - | 2010+ [ |
[1] |
C. Cui, X. Zhu, S. Liu, Q. Li, J. Alloys Compd. 752 (2018) 308-316.
DOI URL |
[2] |
C. Cui, Y. Gao, S. Wei, G. Zhang, Y. Zhou, X. Zhu, J. Alloys Compd. 716 (2017) 321-329.
DOI URL |
[3] |
L. Dong, J. Li, J. Wang, C. Wang, J. Zhang, L. Xiao, K. Luo, Powder Technol. 346 (2019) 78-84.
DOI URL |
[4] |
Y. Zhou, Y. Gao, S. Wei, K. Pan, Y. Hu, Int. J. Refract. Met. Hard Mater. 54 (2016) 186-195.
DOI URL |
[5] |
P.M. Cheng, G.J. Zhang, J.Y. Zhang, G. Liu, J. Sun, Mater. Sci. Eng. A 640 (2015) 320-329.
DOI URL |
[6] |
J. Gan, Q. Gong, Y. Jiang, H. Chen, Y. Huang, K. Du, Y. Li, M. Zhao, F. Lin, D. Zhuang, J. Alloys Compd. 796 (2019) 167-175.
DOI URL |
[7] |
J. Wang, M. Zhou, S. Ma, T. Zuo, J. Alloys Compd. 419 (2006) 172-175.
DOI URL |
[8] | S. Gu, M. Qin, H. Zhang, J. Ma, Materials 11 (2018) 2385. |
[9] |
T. Zhang, H.W. Deng, Z.M. Xie, R. Liu, J.F. Yang, C.S. Liu, X.P. Wang, Q.F. Fang, Y. Xiong, J. Mater. Sci. Technol. 52 (2020) 29-62.
DOI |
[10] |
W. Hu, Z. Dong, H. Wang, T. Ahamad, Z. Ma, Int. J. Refract. Met. Hard Mater. 95 (2021), 105453.
DOI URL |
[11] |
P.M. Cheng, Z.J. Zhang, G.J. Zhang, J.Y. Zhang, K. Wu, G. Liu, W. Fu, J. Sun, Mater. Sci. Eng. A 707 (2017) 295-305.
DOI URL |
[12] |
R.Z. Liu, K.S. Wang, P.F. Feng, G. An, Q.L. Yang, H. Zhao, Rare Met. 33 (2013) 58-64.
DOI URL |
[13] |
Z. Dong, N. Liu, W. Hu, X. Kong, Z. Ma, Y. Liu, Mater. Des. 181 (2019), 108080.
DOI URL |
[14] |
Z. Dong, W.Q. Hu, Z.Q. Ma, C. Li, Y.C. Liu, Mater. Chem. Front. 3 (2019) 1952-1972.
DOI URL |
[15] |
W. Hu, L. Yu, Z. Ma, Y. Liu, J. Alloys Compd. 806 (2019) 127-135.
DOI URL |
[16] |
W. Hu, Z. Dong, Z. Ma, Y. Liu, J. Alloys Compd. 821 (2020), 153461.
DOI URL |
[17] |
W. Hu, Q. Ma, Z. Ma, Y. Huang, Z. Wang, Y. Liu, Tungsten 1 (2019) 220-228.
DOI URL |
[18] |
W. Hu, Z. Dong, L. Yu, Z. Ma, Y. Liu, J. Mater. Sci. Technol. 36 (2020) 84-90.
DOI URL |
[19] |
M. Qin, J. Yang, Z. Chen, P. Chen, S. Zhao, J. Cheng, P. Cao, B. Jia, G. Chen, L. Zhang, X. Qu, Mater. Sci. Eng. A 774 (2020), 138878.
DOI URL |
[20] |
Y. Zhao, Z. Ma, L. Yu, J. Dong, Y. Liu, J. Mater. Sci. Technol. 68 (2021) 184-190.
DOI URL |
[21] |
H. Kurishita, Y. Amano, S. Kobayashi, K. Nakai, H. Arakawa, Y. Hiraoka, T. Takida, K. Takebe, H. Matsui, J. Nucl. Mater. 367-370 (2007) 1453-1457.
DOI URL |
[22] |
W. Hu, X. Kong, Z. Du, A. Khan, Z. Ma, J. Alloys Compd. 859 (2021), 157774.
DOI URL |
[23] |
G.B. Shan, Y.Z. Chen, Y.J. Li, C.Y. Zhang, H. Dong, Y.B. Cong, W.X. Zhang, L.K. Huang, T. Suo, F. Liu, Scr. Mater. 179 (2020) 1-5.
DOI URL |
[24] |
Y. Lv, J. Fan, Y. Han, T. Liu, P. Li, H. Yan, J. Alloys Compd. 774 (2019) 1140-1150.
DOI URL |
[25] |
J. Wang, W. Liu, H. Li, F. Gao, Z.-Y. Ren, M. Zhou, Trans. Nonferrous Met. Soc. China 20 (2010) 233-237.
DOI URL |
[26] |
C. Cui, Y. Gao, S. Wei, G. Zhang, Y. Zhou, X. Zhu, S. Guo, Appl. Phys. A 122 (2016) 214-220.
DOI URL |
[27] |
W. Hu, Z. Dong, Z. Ma, Y. Liu, Inorg. Chem. Front. 7 (2020) 659-666.
DOI URL |
[28] |
T. Ryu, K.S. Hwang, Y.J. Choi, H.Y. Sohn, Int. J. Refract. Met. Hard Mater. 27 (2009) 701-704.
DOI URL |
[29] |
X. Chen, B. Li, T. Wang, R. Li, J. Wang, S. Ren, G. Zhang, Vacuum 152 (2018) 70-77.
DOI URL |
[30] |
J. Wang, W. Liu, Z. Ren, F. Yang, Y. Wang, Y. Du, M. Zhou, Curr. Appl. Phys. 11 (2011) 667-672.
DOI URL |
[31] |
X. Wang, H. Song, M. Wang, B. Ding, Mater. Lett. 59 (2005) 1756-1759.
DOI URL |
[32] |
C. Cui, X. Zhu, S. Liu, Q. Li, M. Zhang, G. Zhu, S. Wei, J. Alloys Compd. 768 (2018) 81-87.
DOI URL |
[33] |
L. Wang, J. Sun, G. Liu, Y. Sun, G. Zhang, Int. J. Refract. Met. Hard Mater. 29 (2011) 522-527.
DOI URL |
[34] |
E. Bermejo, T. Dantas, C. Lacour, M. Quarton, Mater. Res. Bull. 30 (1995) 645-652.
DOI URL |
[35] |
S. Mi, Z. Liu, C. Luo, L. Cai, Z. Zhang, L. Li, Drying Technol. 38 (2019) 1-21.
DOI URL |
[36] |
X. Xi, X. Pi, Z. Nie, S. Song, X. Xu, T. Zuo, Int. J. Refract. Met. Hard Mater. 27 (2009) 101-104.
DOI URL |
[37] |
X. Xi, Z. Nie, L. Ma, L. Li, X. Xu, T. Zuo, Powder Technol. 226 (2012) 114-116.
DOI URL |
[38] |
Z. Gao, W. Yang, J. Wang, N. Song, X. Li, Nano Energy 13 (2015) 306-317.
DOI URL |
[39] |
X. Xi, G. Chen, Z. Nie, S. He, X. Pi, X. Zhu, J. Zhu, T. Zuo, J. Alloys Compd. 497 (2010) 377-379.
DOI URL |
[40] |
L. Mancic, Z. Marinkovic, O. Milosevic, Mater. Chem. Phys. 67 (2001) 288-290.
DOI URL |
[41] |
Z. Zhou, J. Tan, D. Qu, G. Pintsuk, M. Rödig, J. Linke, J. Nucl. Mater. 431 (2012) 202-205.
DOI URL |
[42] |
Z. Dong, N. Liu, Z. Ma, C. Liu, Q. Guo, Y. Yamauchi, H.R. Alamri, Z.A. Alothman, M. Shahriar, A. Hossain, Y. Liu, Int. J. Refract. Met. Hard Mater. 69 (2017) 266-272.
DOI URL |
[43] |
L. Yao, S. Wei, Y. Zhou, L. Xu, C. Chen, T. Sun, Pengpeng Shi, Int. J. Refract. Met. Hard Mater. 75 (2018) 202-210.
DOI URL |
[44] |
W. Hu, Z. Du, Z. Dong, L. Yu, T. Ahamad, Z. Ma, Scr. Mater. 198 (2021), 113831.
DOI URL |
[45] | N. Liu, Z. Dong, Z. Ma, Z. Qian, L. Ma, L. Yu, Y. Liu, Acta Metall. Sin.(Engl. Lett.) 33 (2019) 275-280. |
[46] |
H. Kurishita, S. Matsuo, H. Arakawa, T. Sakamoto, S. Kobayashi, K. Nakai, H. Okano, H. Watanabe, N. Yoshida, Y. Torikai, Y. Hatano, T. Takida, M. Kato, A. Ikegaya, Y. Ueda, M. Hatakeyama, T. Shikama, Phys. Scr. T159 (2014), 014032.
DOI URL |
[47] |
M. Battabyal, R. Schäublin, P. Spätig, N. Baluc, Mater. Sci. Eng. A 538 (2012) 53-57.
DOI URL |
[48] |
Z. Dong, N. Liu, W. Hu, Z. Ma, C. Li, C. Liu, Q. Guo, Y. Liu, J. Mater. Sci. Technol. 36 (2020) 118-127.
DOI |
[49] |
Z. Dong, Z. Ma, L. Yu, Y. Liu, Sci. China Mater. 64 (2021) 987-998.
DOI URL |
[1] | Chang-Yu Hung, Yu Bai, Nobuhiro Tsuji, Mitsuhiro Murayama. Grain size altering yielding mechanisms in ultrafine grained high-Mn austenitic steel: Advanced TEM investigations [J]. J. Mater. Sci. Technol., 2021, 86(0): 192-203. |
[2] | Gongcheng Yao, Chezheng Cao, Shuaihang Pan, Jie Yuan, Igor De Rosa, Xiaochun Li. Thermally stable ultrafine grained copper induced by CrB/CrB2 microparticles with surface nanofeatures via regular casting [J]. J. Mater. Sci. Technol., 2020, 58(0): 55-62. |
[3] | Xiaohui Zhang, Yi Zhang, Baohong Tian, Yanlin Jia, Ming Fu, Yong Liu, Kexing Song, Alex.A. Volinsky, Xiao Yang, Hang Sun. Graphene oxide effects on the properties of Al2O3-Cu/35W5Cr composite [J]. J. Mater. Sci. Technol., 2020, 37(0): 185-199. |
[4] | Weiqiang Hu, Zhi Dong, Liming Yu, Zongqing Ma, Yongchang Liu. Synthesis of W-Y2O3 alloys by freeze-drying and subsequent low temperature sintering: Microstructure refinement and second phase particles regulation [J]. J. Mater. Sci. Technol., 2020, 36(0): 84-90. |
[5] | P. Xue, B.L. Xiao, Z.Y. Ma. Achieving Large-area Bulk Ultrafine Grained Cu via Submerged Multiple-pass Friction Stir Processing [J]. J. Mater. Sci. Technol., 2013, 29(12): 1111-1115. |
[6] | S.Billard, E.Meslin, G.F.Dirras, J.P.Fondère, B.Bacroix. Commercial Purity Aluminum with a BimodalGrain Size Distribution: Mechanical Properties, Deformation and Fracture Mechanisms [J]. J Mater Sci Technol, 2004, 20(Supl.): 1-5. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||